Как искусственный интеллект научили решать диффуры
Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.
Какое-то время продолжим трудится на общее благо по адресу
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.
Спасибо, ждём вас на N-N-N.ru
В преддверии старта нового потока курса «Математика и Machine Learning для Data Science», делимся с вами полезным переводом статьи из MIT Technology Review о том, как исследователи Колтеха научили ИИ решать дифференциальные уравнения частных производных, зачем это нужно и как может изменить мир. Все подробности вы найдёте под катом.
Если только вы не физик или инженер, у вас нет особых причин знать о дифференциальных уравнениях в частных производных. И после многих лет работы в аспирантуре, когда я изучала машиностроение, с тех пор я не использовала их в реальной жизни.
Но у таких уравнений (далее для простоты используем английское сокращение PDE) есть своя магия. Это категория математических уравнений, по-настоящему хорошо описывающих изменения в пространстве и времени, и, таким образом, очень удобных при описании физических явлений в нашей Вселенной. С их помощью можно смоделировать все — от планетарных орбит до тектоники плит и мешающей полету турбулентности воздуха, что, в свою очередь, позволяет делать полезные вещи, например, прогнозировать сейсмическую активность и проектировать безопасные самолеты.
Подвох в том, что PDE, как известно, трудно решить. И здесь значение слова «решение», пожалуй, лучше проиллюстрировать. Например, вы пытаетесь смоделировать турбулентность воздуха, чтобы протестировать новую конструкцию самолета. Существует известное PDE под названием уравнение Навье — Стокса, применяемое для описания движения любой жидкости. Решение уравнения Навье — Стокса позволяет сделать «снимок» движения воздуха (ветровых условий) в любой момент и смоделировать, как он будет продолжать двигаться или как он двигался раньше.
Эти вычисления очень сложны и требуют больших вычислительных затрат, поэтому дисциплины, работающие с большим количеством PDE, для выполнения математических расчетов часто полагаются на суперкомпьютеры. Именно поэтому специалисты области ИИ проявляют особый интерес к этим уравнениям. Если бы мы могли использовать глубокое обучение, чтобы ускорить решение, это могло бы принести много пользы в научных исследованиях и инженерии.
Исследователи Колтеха внедрили новую методику глубокого изучения для решения PDE, которая значительно точнее методов глубокого изучения, разработанных ранее. Метод также достаточно обобщен для того, чтобы решать целые семейства PDE, такие как уравнение Навье — Стокса для любого типа жидкости, без необходимости нового обучения. Наконец, это в 1000 раз быстрее, чем традиционные математические формулы, что уменьшает зависимость от суперкомпьютеров и увеличивает вычислительные возможности моделирования задач еще больше. И это хорошо. Дайте два!
Прежде чем мы погрузимся в то, как это сделали исследователи, давайте сначала оценим результаты.
- Источник(и):
- Войдите на сайт для отправки комментариев