Характеристики оптического пинцета улучшили в несколько раз
Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.
Какое-то время продолжим трудится на общее благо по адресу
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.
Спасибо, ждём вас на N-N-N.ru
Российские исследователи предложили способ увеличения дальности действия оптического пинцета. Такие устройства позволяют перемещать отдельные микрочастицы и найдут применение в биологических и химических исследованиях. Результаты работы опубликованы в журнале Optics Letters.
Оптический пинцет использует лазерный пучок для перемещения объектов размером в несколько микрон. С помощью него можно манипулировать, например, живыми клетками, белками и молекулами. В 2018 году за эту технологию американский физик Артур Эшкин получил Нобелевскую премию. До изобретения оптического пинцета перемещать такие объекты было невозможно — они сразу же разрушались. Оптический пинцет решил эту проблему.
«Под оптическим пинцетом мы понимаем оптические ловушки. Они работают следующим образом: линза фокусирует свет лазера, и частицы, которые находятся в поле фокусировки, начинают двигаться в сторону максимальной интенсивности светового поля, как бы прижимаясь. Благодаря этому частицы можно захватывать и перемещать. Чтобы увеличить степень локализации оптического поля в области фокусировки в такой ловушке, которая работает в режиме «на отражение», мы ранее предложили использовать вместо линз микрочастицы диэлектрика, например кварца», — рассказывает руководитель проекта, профессор кафедры электронной инженерии Томского политехнического университета Игорь Минин.
При взаимодействии с такой частицей свет фокусируется в виде фотонной струи в направлении, противоположном направлению падения излучения. Именно она выполняет роль ловушки, или пинцета. Однако, чтобы создать классическую фотонную струю, необходимо выполнение одного условия — соотношение показателей преломления частицы и среды должно быть меньше двух. Но ранее считалось, что увеличить показатель преломления и при этом создать фотонную струю просто невозможно.
Авторы нового исследования сначала в теории, а затем и с помощью моделирования показали, что это не так. Для этого исследователи сформировали струю в режиме «на отражение».
«Есть два режима: на прохождение и на отражение. В первом случае струя образуется при прохождении света через диэлектрическую частицу. А в режиме на отражение позади частицы мы ставим плоское зеркало, за счет чего фокус перемещается на зеркало. В результате мы получаем двойную фокусировку: свет фокусируется через частицу на зеркале, а затем в обратном направлении снова собирается этой же частицей в фотонную струю. Мы смогли сформировать струю в таком режиме из диэлектрической частицы и достигли показателя соотношения преломления частицы и среды больше двух. Это дало увеличение области захвата в разы», — резюмирует Минин.
- Источник(и):
- Войдите на сайт для отправки комментариев