Сильное взаимодействие света с веществом поддалось моделированию
Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.
Какое-то время продолжим трудится на общее благо по адресу
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.
Спасибо, ждём вас на N-N-N.ru
Ученая-физик предложила новую модель для описания взаимодействия света с веществом и рассчитала с помощью нее явления, которые не могла описать предыдущая модель. Она показала влияние сильной и слабой электрон-фотонной связи, предсказала, как эту связь можно контролировать, и смогла пронаблюдать дифракцию электронов в системе.
Работа опубликована в Physical Review Letters.
В исследованиях взаимодействия света с веществом не последнюю роль играют плазмонные структуры. Чаще всего это металлы или полупроводники. При облучении металла светом большинство фотонов отражается от поверхности (поэтому металлы выглядят такими блестящими), но есть и такие, которые проникают внутрь и вызывают колебания свободных электронов — плазменные колебания. В последнем случае фотоны должны иметь частоту, совпадающую с частотой энергетического перехода металла, который чаще всего лежит в ультрафиолетовой области.
Однако у золота и меди есть переходы между уровнями, которые лежат в видимом диапазоне, поэтому их чаще всего используют для исследований. Различают объемные, поверхностные (возмущение распространяется по поверхности материала) и локализованные плазмоны. Последний тип реализуется на золотых или медных наноструктурах, вокруг которых локализуется усиливающее электромагнитное поле.
Слабое взаимодействие электронов и фотонов (не путать с фундаментальными взаимодействиями) удобно для исследования коллективных возбуждений, например, плазмонов и приводит к большому числу процессов поглощения и испускания. Поэтому типичный спектр слабого взаимодействия состоит из множества резонансов и представляет собой частотную гребенку с интенсивным центральным пиком и убывающими по мере удаления от центра боковыми.
Сильное взаимодействие приводит к тому, что энергия центрального пика в спектре расползается и в системе возникают упругие и неупругие взаимодействия высоких порядков. Помимо этого, он может приводить к запутыванию фотона с электроном, а при определенным условиях сила связи между ними может существенно возрастать, что позволяет наблюдать новые явления. И если экспериментально их уже наблюдали, то существующая теория адиабатического приближения не учитывает роль дифракции и электронной отдачи (отклонение электрона после взаимодействия с фотоном).
Нахид Талеби (Nahid Talebi) из Кильского университета исследовала взаимодействия медленных и быстрых электронов с плазмонными возбуждениями в ближнем поле.
- Источник(и):
- Войдите на сайт для отправки комментариев