Стагнация машинного обучения. Многие задачи не будут решены никогда?
Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.
Какое-то время продолжим трудится на общее благо по адресу
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.
Спасибо, ждём вас на N-N-N.ru
Последние годы глубокого обучения — сплошная череда достижений: от победы над людьми в игре Го до мирового лидерства в распознавании изображений, голоса, переводе текста и других задачах. Но этот прогресс сопровождается ненасытным ростом аппетита к вычислительной мощности.
Группа ученых из MIT, Университета Ёнсе (Корея) и Университета Бразилиа опубликовала метаанализ 1058 научных работ по машинному обучению. Он явно показывает, что прогресс в области машинного обучения (ML) — это производная от вычислительной мощности системы. Производительность компьютеров всегда ограничивала функциональность ML, но сейчас потребности новых моделей ML растут гораздо быстрее, чем производительность компьютеров.
Исследование демонстрирует, что достижения машинного обучения по сути — немногим более чем следствие закона Мура. И по этой причине многие задачи ML не будут решены никогда в силу физических ограничений вычислителя.
Исследователи проанализировали научные работы по классификации изображений (ImageNet), распознаванию объектов (MS COCO), ответам на вопросы (SQuAD 1.1), распознаванию именованных сущностей (COLLN 2003) и машинному переводу (WMT 2014 En-to-Fr).
- Источник(и):
- Войдите на сайт для отправки комментариев