Биотехнологи Пермского Политеха нашли способ извлечь редкие металлы из экранов смартфонов
Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.
Какое-то время продолжим трудится на общее благо по адресу
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.
Спасибо, ждём вас на N-N-N.ru
Молодая исследовательница из Пермского Политеха разработала способ извлечения редких и дорогостоящих металлов из мониторов и экранов, у которого нет аналогов в мире. Первые результаты исследования группа ученых представила в журнале E3S Web of Conferences.
15 апреля во многих странах мира отмечают День экологических знаний. К 2020 году во всем мире накоплено 53,6 миллионов тонн электронных отходов, в том числе неработающие электрические устройства и смартфоны. Их количество ежегодно растет, и через десять лет эта цифра может достигнуть 74,7 миллионов тонн. Только в России каждый год появляется 1,6 миллионов тонн электронных отходов.
«Сегодня средний срок службы мобильных телефонов и компьютеров сокращается и составляет около двух и шести лет. Затем устройства становятся отходами, которые не перерабатывают. В результате они загрязняют окружающую среду. Поэтому мы предложили способ, который позволит вернуть в производственный цикл редкие и дорогостоящие металлы», – рассказывает аспирант кафедры «Охрана окружающей среды» факультета химических технологий, промышленной экологии и биотехнологий Пермского Политеха Анастасия Чугайнова.
В состав электронных отходов входит множество редких и дорогостоящих металлов – например, индий, золото, церий и эрбий. Кроме того, они содержат другие полезные элементы: алюминий, мышьяк, бор, барий, кальций, хром, медь, железо, калий, магний, молибден, натрий, никель, свинец, олово, сурьму, стронций и цинк.
В частности, экраны покрывают индием и оловом для получения тач-скрина. Большинство смартфонов оборудовано дисплеем из смеси оксида алюминия и двуокиси кремния. Дополнительно его закаляют ионами калия, чтобы увеличить прочность. Более редкие элементы используют для того, чтобы дисплей стал цветным и мог противостоять УФ-излучению, рассказывают исследователи.
Редкие металлы сейчас добывают из природных источников, но этих запасов хватит на 20 лет. Их содержание в источнике составляет 0,001 до 0,1 процента. При добыче образуются более 90 процентов дополнительных примесей. Перерабатывая электронику, можно получить больше полезного материала и снизить класс опасности отхода. Выделение конкретного металла из всего потока позволит вернуть его в производственный цикл, а не захоронять на полигонах ТКО, как происходит сейчас.
«Мы выщелачиваем металлы в раствор, который нужно довести до необходимого уровня pH. Микроскопические водоросли Chlorella Vulgaris, Chlorella Sorokiniana, Chlorella Spirulina и Scenedesmus sp. поглощают их из экранов и мониторов. Затем мы сжигаем водоросли, а металлы остаются в зольном остатке. Сейчас мы «обучаем» водоросли «избирательно» извлекать редкие металлы. Наша группа уже определила необходимые условия обработки экранов и извлечения металлов, – поясняет биотехнолог.
Проект молодой исследовательницы поддержал Фонд содействия инновациям по программе «УМНИК» (2019 – 2021 годы). Кроме того, она прошла годовую стажировку по этой теме в Техническом университете Гамбурга (Германия) при поддержке стипендии Президента РФ (2018 – 2019).
По мнению ученых, разработка может быть интересна потребителям редких металлов – производителям электронной техники и предприятиям машиностроительной и металлургической отраслей. Кроме того, технологию можно применять на заводах по добыче и производству редких металлов и на полигонах твердых коммунальных отходов.
- Источник(и):
- Войдите на сайт для отправки комментариев