Эксперимент с двумя щелями и границы макромира

Автор: Олег Сивченко. В 1900, последнем году XIX века, Макс Планк открыл кванты света: показал, что энергия света передается в виде минимальных энергетических пакетов. Так зародилась квантовая физика, которая, казалось бы, совершенно случайно попала из XXI века в начало XX-го. На практике квантовая механика оказалась одной из самых точных и строгих систем, известных науке: принципы квантовой механики лежат в основе деления атомного ядра, действия лазера, работы полупроводников.

Сегодня уже осуществлены квантовая телепортация и квантовые вычисления. При этом, еще в 1927 году, на пятом Сольвеевском конгрессе, посвященном проблемам квантовой механики, состоялся знаменитый спор между Альбертом Эйнштейном и Нильсом Бором по поводу интерпретируемости квантовой механики.

На тот момент победила точка зрения Бора («копенгагенская интерпретация»), указывающая, что следует абстрагироваться от концептуализации событий, происходящих при квантовых взаимодействиях, удовлетворившись математической согласованностью квантовой механики. При этом квантовая система понимается во многом как «черный ящик», но ее уравнения с удивительной точностью подтверждают результаты экспериментов.

Основное отличие квантовой физики (доминирует в микромире) от классической физики (доминирует в макромире) заключается в вероятностном характере квантовых процессов. Так, применительно к электрону в атоме, уравнения квантовой механики дают распределение вероятностей, указывающих, в какой точке орбитали должен быть электрон – и именно там он и оказывается по результатам эксперимента. Именно с неопределенностью результатов квантового эксперимента вплоть до его окончания связаны и разнообразные квантовые парадоксы, увлекательно описанные в книге Николя Жизана «Квантовая случайность. С неопределенностью того же рода связан знаменитый реальный эксперимент с двумя щелями. Ниже я напомню суть этого эксперимента, после чего расскажу о его новейших постановках.

Суть этих повторных экспериментов – наблюдать проявление квантовой вероятности не только в случаях с элементарными частицами, но и с атомами, неорганическими молекулами, крупными органическими молекулами и… так далее. Так нащупывается граница между микромиром и макромиром, то есть, областью доминирования квантовой физики и областью доминирования классической физики.

Эксперимент с двумя щелями

В начале XIX века в научном сообществе, представители которого мыслили в духе детерминизма классической физики, всерьез встал вопрос о том, что представляет собой свет: частицы или волны. Ньютон считал, что свет состоит из мельчайших частиц, «корпускул», что и позволяет объяснить его преломление. С другой стороны, теория Гука-Гюйгенса приводит к выводу, что свет проявляет волновые свойства. Ключевым экспериментом, призванным конкретизировать природу света, стал опыт с двумя щелями, поставленный Томасом Юнгом в 1801 году.

Подробнее
Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 5 (1 vote)
Источник(и):

Хабр