FermiNet: квантовая физика и химия с азов

Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.

Какое-то время продолжим трудится на общее благо по адресу https://n-n-n.ru.
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.

Спасибо, ждём вас на N-N-N.ru

Автор оригинала: David Pfau, James Spencer, Alexander Matthews, Matthew Foulkes. В статье, недавно опубликованной в Physical Review Research, мы демонстрируем, как при помощи глубокого обучения упрощается решение фундаментальных квантовомеханических уравнений для реальных систем. При этом решается не только принципиальный научный вопрос, но и открываются перспективы для практического использования полученных результатов в будущем.

Исследователи смогут прототипировать новые материалы и соединения in silico прежде, чем попытаться синтезировать их в лаборатории. Также выложен код из этого исследования; таким образом, команды специалистов по вычислительной физике и химии могут опираться на проделанную работу и применять ее при решении разнообразных проблем.

В рамках исследования была разработана новая архитектура нейронной сети, Fermionic Neural Network или FermiNet, которая хорошо подходит для моделирования квантового состояния больших совокупностей электронов – а ведь именно на электронах основаны все химические связи. Сеть FermiNet впервые продемонстрировала, как использовать глубокое обучение для вычисления энергии атомов и молекул с азов. Полученная модель оказалась достаточно точной для практического применения и на момент публикации оригинала статьи (октябрь 2020) оставалась наиболее точным нейросетевым методом, применяемым в отрасли.

Предполагается, что связанные с ней методы и инструментарий могут пригодиться при решении фундаментальных проблем в естественных науках. Авторы FermiNet уже применяют ее в работе над сверткой белков, динамикой стеклообразных соединений, квантовой хромодинамикой на решетке и во многих других проектах, помогающих воплотить данные наработки на практике.

Подробнее
Пожалуйста, оцените статью:
Пока нет голосов
Источник(и):

Хабр