Физики нашли способ исправить автономные квантовые ошибки

Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.

Какое-то время продолжим трудится на общее благо по адресу https://n-n-n.ru.
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.

Спасибо, ждём вас на N-N-N.ru

Исследователи, финансируемые армией и военно-воздушными силами США, сделали шаг в создании отказоустойчивого квантового компьютера. Он обеспечит расширенные возможности обработки данных. Квантовые вычисления — путь к новым вычислительным возможностям.

Он также может способствовать открытию материалов, искусственному интеллекту , биохимической инженерии и многим другим дисциплинам, необходимым для будущих военных технологий.

Однако, поскольку кубиты, фундаментальные строительные блоки квантовых компьютеров, по своей сути хрупки, давним препятствием для квантовых вычислений была эффективная реализация квантовой коррекции ошибок. Кроме того, военные планируют «сражаться и побеждать» в так называемых многодоменных операциях как раз используя квантовые вычисления, сообщает Научно-исследовательская лаборатория армии США.

Исследователи из Массачусетского университета в Амхерсте определили способ защиты квантовой информации от общего источника ошибок в сверхпроводящих системах, одной из ведущих платформ для реализации крупномасштабных квантовых компьютеров. В исследовании, опубликованном в журнале Nature, ученые реализовали новый способ спонтанного исправления квантовых ошибок.

oshibki.pngПредоставлено: Армейская исследовательская лаборатория.

Сегодняшние компьютеры построены с транзисторами, представляющими классические биты, либо 1, либо 0. В свою очередь, квантовые вычисления — это новая парадигма вычислений с использованием квантовых битов или кубитов, где квантовая суперпозиция и запутанность могут использоваться для экспоненциального увеличения вычислительной мощности.

Существующие демонстрации квантовой коррекции ошибок активны. Это значит, что они требуют периодической проверки на наличие ошибок и их немедленного исправления. В свою очередь, это требует аппаратных ресурсов и, таким образом, препятствует масштабированию квантовых компьютеров.

Напротив, в эксперименте исследователей достигается пассивная квантовая коррекция ошибок путем корректировки трения, или диссипации, испытываемой кубитом. Поскольку трение обычно считается важным препятствием квантовой когерентности, этот результат может показаться неожиданным. Хитрость в том, что диссипация должна быть спроектирована специально квантовым образом.

Эта общая стратегия была известна в теории около двух десятилетий, но практический способ получить такую диссипацию и использовать ее для квантовой коррекции ошибок было сложной задачей.

«Демонстрация таких нетрадиционных подходов, мы надеемся, подтолкнет к появлению более умных идей для преодоления некоторых из самых сложных проблем квантовой науки», — объясняет Грейс Меткалф, женщина-программный руководитель отдела квантовой информатики в AFOSR.

Исследователи заявили, что подразумевается, что может быть больше способов защитить кубиты от ошибок и сделать это с меньшими затратами.

«Хотя наш эксперимент все еще является довольно элементарной демонстрацией, мы наконец реализовали эту противоречивую теоретическую возможность диссипативных QEC, — сказал доктор Чен Ван, физик из Массачусетского университета в Амхерсте. — Этот эксперимент поднимает перспективу создания полезного отказоустойчивого квантового компьютера в среднесрочной и долгосрочной перспективе».

Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 5 (2 votes)
Источник(и):

ХайТек