Как квантовые точки могут «разговаривать» друг с другом
Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.
Какое-то время продолжим трудится на общее благо по адресу
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.
Спасибо, ждём вас на N-N-N.ru
Ученые исследуют, как квантовые точки взаимодействуют друг с другом с атомистической точки зрения, пишет eurekalert.org. Так называемые квантовые точки – это новый класс материалов с множеством применений. Квантовые точки представляют собой крошечные полупроводниковые кристаллы с размерами в нанометровом диапазоне. Оптическими и электрическими свойствами можно управлять с помощью размера этих кристаллов.
Как QLED, они уже представлены на рынке последних поколений плоских экранов телевизоров, где они обеспечивают особенно яркую цветопередачу с высоким разрешением. Однако квантовые точки используются не только в качестве «красителей», они также используются в солнечных элементах или в качестве полупроводниковых устройств, вплоть до вычислительных строительных блоков, кубитов, квантового компьютера.
Теперь команда под руководством доктора Анники Банде из HZB расширила понимание взаимодействия между несколькими квантовыми точками с атомистической точки зрения в теоретической публикации.
Анника Банде возглавляет группу «Теория электронной динамики и спектроскопии» в HZB и особенно интересуется происхождением квантовых физических явлений. Хотя квантовые точки представляют собой чрезвычайно крошечные нанокристаллы, они состоят из тысяч атомов, в свою очередь, с множеством электронов. Даже с помощью суперкомпьютеров электронная структура такого полупроводникового кристалла вряд ли может быть рассчитана, подчеркивает химик-теоретик, недавно получивший степень бакалавра во Свободном университете.
«Но мы разрабатываем методы, которые приблизительно описывают проблему, – объясняет Банде. – В этом случае мы работали с уменьшенными версиями квантовых точек, содержащих всего около сотни атомов, которые, тем не менее, обладают характерными свойствами реальных нанокристаллов. С помощью этого подхода после полутора лет разработки и в сотрудничестве с профессором Жаном Кристофом Трембле из CNRS-Université de Lorraine в Меце нам удалось смоделировать взаимодействие двух квантовых точек, каждая из которых состоит из сотен атомов, которые обмениваются энергией друг с другом. В частности, мы исследовали, как эти две квантовые точки могут поглощать, обменивать и постоянно хранить энергию, контролируемую светом. Первый световой импульс используется для возбуждения, а второй световой импульс вызывает накопление.
В общей сложности мы исследовали три разных пары квантовых точек, чтобы уловить влияние размера и геометрии. Мы рассчитали электронную структуру с высочайшей точностью и смоделировали движение электронов в реальном времени с фемтосекундным разрешением».
Результаты также очень полезны для экспериментальных исследований и разработок во многих областях применения, например, для разработки кубитов или для поддержки фотокатализа, для получения зеленого водородного газа под действием солнечного света.
«Мы постоянно работаем над расширением наших моделей в сторону еще более реалистичных описаний квантовых точек, – говорит Банде, – например, чтобы уловить влияние температуры и окружающей среды».
- Источник(и):
- Войдите на сайт для отправки комментариев