Молекула-рука поможет фармацевтам отлавливать «злых близнецов» лекарственных препаратов

Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.

Какое-то время продолжим трудится на общее благо по адресу https://n-n-n.ru.
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.

Спасибо, ждём вас на N-N-N.ru

Химики из Института элементоорганических соединений имени А.Н. Несмеянова предложили новый метод получения «зеркальных» катализаторов, которые используются для создания ценных органических соединений, например, противогрибковых препаратов. Это поможет решить проблему тестирования лекарств, у которых есть вторая форма — зеркально симметричный «близнец», способный вызывать опасные побочные эффекты.

Статья об исследовании, поддержанном грантом Российского научного фонда, опубликована в журнале Angewandte Chemie.

Создание эффективного медицинского препарата — непростая задача для ученых, однако следом за ней идет еще один важный и очень сложный этап — регистрация лекарства. Для этого недостаточно провести детальное тестирование только целевого вещества, нужно также проверить безопасность его энантиомера — зеркальной копии молекулы.

Такое правило было введено, чтобы предотвратить повторение трагической истории препарата талидомид. Впервые он появился на рынке в середине прошлого века — лекарственное средство рекомендовали беременным от бессонницы и утренней тошноты. Однако позже выяснилось, что в то время как основная молекула талидомида облегчала состояние женщин, его зеркальная копия приводила к появлению патологий у новорожденных.

Получение энантиомеров — серьезная проблема для фармацевтических компаний. Их часто синтезируют из природных соединений, однако в этом случае обычно есть только одна из зеркальных копий молекулы — либо «правая», либо «левая». Из-за ограниченного доступа к обеим копиям веществ многие специалисты и вовсе отказались от разработки препаратов, для которых возможно потенциальное существование энантиомеров.

Решить эту проблему можно с помощью «зеркальных» катализаторов, которые позволяют синтезировать оба энантиомера лекарственных молекул. Такие катализаторы стали популярны благодаря японским исследователям в конце XX века и в настоящее время широко используются в лабораториях по всему миру.

molekula1.pngКристаллы «зеркальных» родиевых катализаторов. Желтый — катализатор, связанный со вспомогательным лигандом, оранжевый — его зеркальный антипод, оставшийся свободным. Источник: Дмитрий Перекалин

Ученые из Института элементоорганических соединений имени А.Н. Несмеянова Российской академии наук (Москва) предложили новый необычный способ получения «зеркальных» катализаторов.

В основе их метода лежит разделение доступной смеси родиевых катализаторов на «правые» и «левые» молекулы. Поскольку рассортировать химические соединения вручную невозможно, из природной «левой» аминокислоты ученые синтезировали специальную молекулу-руку, которая схватывает только «правые» катализаторы и не трогает «левые». Такая избирательность обеспечивается отталкиванием между фрагментами молекул при попытке руки схватить «левый» катализатор.

Ошибки сортировки случаются очень редко — не чаще чем в одном случае из двухсот. Полученные таким методом катализаторы доступнее и разнообразнее, чем их японские аналоги.

«Разработанный подход применим для сортировки совершенно разных соединений. При этом важно подчеркнуть, что оптимальную геометрию вспомогательной молекулы можно заранее подобрать с помощью быстрых расчетов даже на обычном домашнем компьютере. Это позволяет проводить исследование более рационально и избежать поиска методом проб и ошибок. Таким образом мы сможем создавать новые катализаторы для получения лекарственных препаратов и других ценных органических соединений», — рассказывает Дмитрий Перекалин, доктор химических наук, руководитель проекта по гранту РНФ, заведующий лабораторией функциональных элементоорганических соединений ИНЭОС РАН.

Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 5 (2 votes)
Источник(и):

Научная Россия