О том, как нейросеть исследует физику толпы…
Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.
Какое-то время продолжим трудится на общее благо по адресу
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.
Спасибо, ждём вас на N-N-N.ru
Цифровой двойник плотных скоплений хаотически движущихся объектов разрабатывают для задач навигации роботов студенты НИТУ «МИСиС», ИТМО и МФТИ. Он будет представлять собой веб-сервис с применением графовых нейронных сетей и позволит изучать физику толпы, законы роевого поведения у животных и принципы движения «активной материи». Эти данные активно требуются для обучения роботов-курьеров, беспилотников и других автономных устройств, работающих в условиях многолюдных пространств.
Первые результаты опубликованы в журнале Journal of Physics: Conference Series.
Если при движении в потоке людей в метро мы начинаем фокусировать взгляд на ком-то из встречных, мы обязательно остановимся среди толпы и с кем-то столкнемся. Когда мы расслабленно, «интуитивно» идем сквозь толпу, то безошибочно выбираем нужную траекторию и лавируем в потоке, никого не задевая. И это умеет почти каждый человек. Так происходит потому, что мозг работает, как сложная нейросеть. Незаметно для сознания он использует накопленные за годы интуитивные знания, быстро просчитывает меняющиеся условия и выбирает оптимальный путь.
Вадим_Порватов (НИТУ «МИСиС») объясняет механику движения роботов
Вадим Порватов и Георгий Гриценко обсуждают теоретическую модель
Современным инженерам нужно понять, как именно работает эта нейросеть, чтобы перенять ее принципы и интегрировать их в цифровую среду. Задача навигации роботов в плотных скоплениях (людей, машин, других роботов и т.д.) с каждым годом становится всё актуальнее. При этом, для успешного управления устройствами необходимо отслеживание и экстраполяция траектории каждого отдельного агента в таких скоплениях, что само по себе является сложной задачей.
Подобные системы можно эффективно описывать статистически как «активную материю», в которой каждая частичка сама закачивает энергию в систему, и успешно моделировать такую материю с помощью ансамблей хаотически движущихся роботов – например, имитировать поведение стаи птиц или косяка рыб. Для этого нужно создать симуляцию активной материи, т. е. сгенерировать роевое поведение.
- Источник(и):
- Войдите на сайт для отправки комментариев