Одиночный ион провели сквозь бозе-конденсат
Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.
Какое-то время продолжим трудится на общее благо по адресу
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.
Спасибо, ждём вас на N-N-N.ru
Физикам удалось понаблюдать за контролируемым движением одиночного иона рубидия сквозь конденсат Бозе — Эйнштейна из охлажденных атомов. Особенность эксперимента заключалась в том, что ученые могли с высокой точностью отслеживать траекторию и скорость иона в процессе движения сквозь конденсат, а также влиять на то, как быстро он проходит сквозь атомы и как часто испытывает столкновения с ними.
В будущем такая методика позволит наблюдать за индивидуальными столкновениями ионов с охлажденными атомами в макроскопическом квантовом состоянии и изучать связанные с этим квантовые эффекты.
Статья опубликована в журнале Physical Review Letters.
Обычно к квантовой физике обращаются при попытках описать поведение микроскопических систем, будь то отдельная частица в потенциальной яме, ее рассеяние на другой частице, или же ее простейшее связанное состояние. Однако еще в первой половине 20 века физики поняли, что квантовые эффекты могут наблюдаться и в макроскопической системе, если охладить ее до определенной критической температуры. Именно так были открыты явления сверхтекучести и сверхпроводимости, которые имеют квантовую природу несмотря на макроскопические масштабы наблюдаемых эффектов.
К макроскопической квантовой системе можно отнести и конденсат Бозе — Эйнштейна — равновесную систему из большого числа бозонов (частиц или квазичастиц с целым спином), находящихся в одном и том же квантовом состоянии. Такое агрегатное состояние вещества возможно благодаря тому, что бозоны не подчиняются запрету Паули, сформулированному для фермионов (частиц с полуцелым спином), а значит могут одновременно находиться в своем основном состоянии.
В таком случае вся система может быть описана одной волновой функцией, а значит квантовые эффекты могут проявляться на макроскопическом уровне. Однако получить бозе-конденсат удалось лишь в 1995 году (спустя 70 лет после теоретического предсказания его существования) из-за технической сложности процесса охлаждения большого числа атомов до чрезвычайно низких температур порядка сотен нанокельвинов.
С того момента у конденсата Бозе — Эйнштейна нашли немало интересных свойств, а с его помощью моделируют множество физических явлений: от космологической инфляции до черных дыр. Отдельный интерес для физиков представляют эффекты переноса в охлажденных до столь низких температур атомных газах, в особенности — движение в них заряженных ионов. Ранее в похожих процессах изучали экзотические свойства уже упомянутой сверхтекучести, и теперь физики надеются на результаты и для случая бозе-конденсации. Кроме того, подобные техники могут быть использованы для моделирования квантовых систем вплоть до квантовых компьютеров, и даже для исследования фундаментальных принципов, стоящих за химическими реакциями.
Теперь же Томас Дитерле (Thomas Dieterle) из Штутгартского университета вместе с коллегами провел исследование движения отдельного иона сквозь бозе-конденсат с использованием метода, который позволяет свободно варьировать скорость движения иона и тем самым контролировать режим его взаимодействия с холодными атомами.
- Источник(и):
- Войдите на сайт для отправки комментариев