Представляет ли компьютерное моделирование реальный мир в атомном масштабе?

Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.

Какое-то время продолжим трудится на общее благо по адресу https://n-n-n.ru.
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.

Спасибо, ждём вас на N-N-N.ru

Ученые ищут подтверждение тому, что компьютерное моделирование действительно может описывать реальный мир, пишет new.eurekalert.org. Компьютерное моделирование имеет огромные перспективы для ускорения молекулярной инженерии технологий зеленой энергии, таких как новые системы для хранения электроэнергии и использования солнечной энергии, а также улавливания двуокиси углерода из окружающей среды.

Однако предсказательная сила этих симуляций зависит от наличия средств подтверждения того, что они действительно описывают реальный мир. Такое подтверждение – непростая задача. Многие предположения входят в схему этих симуляций. В результате симуляции должны быть тщательно проверены с использованием соответствующего «протокола проверки», включающего экспериментальные измерения.

«Мы сосредоточились на границе раздела твердое тело/жидкость, потому что границы раздела фаз встречаются в материалах повсеместно, а границы раздела между оксидами и водой являются ключевыми во многих энергетических приложениях», – рассказала Джулия Галли, теоретик в Аргонне и Чикагском университете.

Для решения этой проблемы группа ученых Аргоннской национальной лаборатории Министерства энергетики США, Чикагского университета и Калифорнийского университета в Дэвисе разработала революционный протокол проверки для моделирования атомной структуры интерфейса между твердым состоянием – оксид металла – и жидким – водой. Группу возглавляли Джулия Галли и Пол Фентер, аргоннский экспериментатор.

«Мы сосредоточились на границе раздела твердое тело/жидкость, потому что границы раздела фаз встречаются в материалах повсеместно, а границы раздела между оксидом и водой являются ключевыми во многих областях применения энергии», – сказала Галли.

«На сегодняшний день большинство протоколов проверки были разработаны для сыпучих материалов, игнорируя интерфейсы, – добавил Фентер. – Мы чувствовали, что структура поверхностей и границ раздела в атомарном масштабе в реалистичной среде представляет собой особенно чувствительный и, следовательно, сложный подход к проверке».

Разработанная ими процедура проверки использует измерения рентгеновской отражательной способности (XR) с высоким разрешением в качестве экспериментальной основы протокола. Команда сравнила XR-измерения границы раздела оксид алюминия/вода, проведенные на канале 33-ID-D в усовершенствованном источнике фотонов (APS) в Аргонне, с результатами, полученными в результате высокопроизводительного компьютерного моделирования в Argonne Leadership Computing Facility (ALCF). И APS, и ALCF являются объектами пользователей Управления науки Министерства энергетики США.

«Эти измерения обнаруживают отражение рентгеновских лучей очень высокой энергии от границы раздела оксид/вода», – сказал Чжан Чжан, физик из отдела рентгеновских исследований Аргонны. При энергиях пучка, генерируемых в APS, длины волн рентгеновского излучения аналогичны межатомным расстояниям. Это позволяет исследователям непосредственно исследовать структуру границы раздела на молекулярном уровне.

«Это делает XR идеальным зондом для получения экспериментальных результатов, напрямую сопоставимых с моделированием», – добавила Кэтрин Хармон, аспирантка Северо-Западного университета, приглашенная студентка из Аргонны и первый автор статьи.

Команда провела моделирование в ALCF с использованием кода Qbox, который предназначен для изучения конечных температурных свойств материалов и молекул с помощью моделирования, основанного на квантовой механике.

«Мы смогли проверить несколько приближений теории», – сказал Франсуа Гиги из Калифорнийского университета в Дэвисе, член команды и ведущий разработчик кода Qbox.

Команда сравнила измеренные интенсивности XR с рассчитанными для нескольких смоделированных структур. Они также исследовали, как рентгеновские лучи, рассеянные электронами в разных частях образца, будут мешать созданию экспериментально наблюдаемого сигнала. Усилия команды оказались более сложными, чем предполагалось.

«По общему признанию, вначале это был метод проб и ошибок, когда мы пытались понять правильную геометрию для принятия и правильную теорию, которая дала бы нам точные результаты, – сказала Мария Чан, соавтор исследования, и научный сотрудник Аргоннского центра наноразмерных материалов, исследовательского центра Министерства энергетики США. – Однако наш переход от теории к эксперименту оправдался, и мы смогли создать надежный протокол проверки, который теперь можно развернуть и для других интерфейсов».

«Протокол проверки помог количественно оценить сильные и слабые стороны моделирования, открыв путь к построению более точных моделей границ раздела твердое тело/жидкость в будущем», – сказала Кендра Летчворт-Уивер – доцент Университета Джеймса Мэдисона, она разработала программное обеспечение для прогнозирования сигналов XR на основе моделирования во время постдокторской стажировки в Аргонне.

Моделирование также позволило по-новому взглянуть на сами измерения XR. В частности, они показали, что данные чувствительны не только к расположению атомов, но и к распределению электронов, окружающих каждый атом, тонкими и сложными способами. Эти идеи окажутся полезными для будущих экспериментов на границах раздела оксид/жидкость.

Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 2 (1 vote)
Источник(и):

Научная Россия