Созданы самособирающиеся нанопровода для «зеленой» органической электроники
Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.
Какое-то время продолжим трудится на общее благо по адресу
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.
Спасибо, ждём вас на N-N-N.ru
Молодые ученые из Института физической химии и электрохимии им. А.Н. Фрумкина совместно с коллегами из Института общей и неорганической химии имени Курнакова РАН, а также из МГУ им. М.В. Ломоносова разработали метод получения проводящих наноструктур («нанопроводов»), который позволяет решить все эти задачи.
Статья опубликована в журнале Inorganic Chemistry.
Авторы используют способность органических молекул к самопроизвольной, так называемой супрамолекулярной сборке с помощью слабых межмолекулярных связей, удерживающих молекулы вместе за счет большого числа контактов. Именно этот принцип лежит в основе самосборки сложных биологических объектов: мембран, клеток, тканей.
Нанопровода были собраны из готовых супрамолекулярных блоков размером 2 нм, синтезированных из фталоцианинов – синтетических красителей циклического строения, обладающих полупроводниковыми свойствами и широко использующихся в органической электронике. К фталоцианинам добавили краун-эфирные группы (циклические молекулы-«ловушки» для катионов металлов) и соединили между собой в пары ионами редкоземельных элементов.
Несмотря на сложность молекулярного строения отдельного блока, процесс получения из них нанопроводов очень прост – достаточно добавить к ним соль калия. Катионы калия связываются с краун-эфирными ловушками соседних блоков и собирают их в одномерные стопки длиной до 100 микрон. Такие нанопровода практически не имеют дефектов и проводят электрический ток в 50 раз эффективнее других известных материалов на основе фталоцианинов. Простота метода открывает возможность для его адаптации к реальному производству новых компактных оптоэлектронных устройств.
«Для того, чтобы соединять элементы электрической цепи в устройстве для органической электроники, необходимо уметь укладывать нанопровода в нужной конфигурации на поверхности кремниевого чипа, – рассказывает Александра Звягина, руководитель гранта РНФ для молодых ученых, в рамках которого выполнялась эта работа (грант № 19–73–00025). – Мы обнаружили, что наши нанопровода сами выстраиваются вдоль силовых линий во внешнем электрическом поле, и за счет этого эффекта мы легко и быстро получаем пленки с нанопроводами, уложенными на поверхности в заданном направлении».
Самосборка и ориентация в электрическом поле — это не все преимущества супрамолекулярных нанопроводов по сравнению с традиционными проводящими полимерами. Сравнительная «слабость» связей между молекулами в нанопроводах становится их сильной стороной, позволяя решать одну из самых сложных проблем современной химии, связанную с предотвращением выброса микропластика в окружающую среду при утилизации полимеров.
Ученые ИФХЭ РАН показали, что готовые супрамолекулярные нанопровода, устойчивые в обычных условиях работы электронных устройств, можно быстро разобрать до исходных молекул в специальном растворителе без образования побочных продуктов, которые могли бы повредить окружающей среде. Технология позволяет сохранить ценные соединения, содержащие редкоземельные металлы, в процессе утилизации отработанного чипа и использовать их снова для сборки нового устройства.
Молодые исследователи уверены, что технологии, основанные на супрамолекулярной сборке, способны обеспечить будущий прогресс в области «зеленой» безотходной микроэлектроники, а получаемые с помощью этой технологии проводящие наноструктуры станут надежной альтернативой для трудноразлагаемых проводящих полимеров.
- Источник(и):
- Войдите на сайт для отправки комментариев