Учёные из Тольятти доказали: водород не делает сталь хрупкой

Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.

Какое-то время продолжим трудится на общее благо по адресу https://n-n-n.ru.
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.

Спасибо, ждём вас на N-N-N.ru

Команда учёных опорного Тольяттинского госуниверситета под руководством старшего научного сотрудника Научно-исследовательского института прогрессивных технологий ТГУ Евгения Мерсона провела уникальный эксперимент, направленный на изучение прочности и пластичности сталей под воздействием водорода. Тольяттинские учёные доказали: разрушения под действием водорода и в результате классического низкотемпературного охрупчивания принципиально отличаются друг от друга.

Хрупкое разрушение металлов – коварное физическое явление. Оно не сопровождается внешней деформацией и изменением формы, поэтому начало хрупкого разрушения по внешним признакам обнаружить тяжело. Водородная хрупкость металлов – одна из разновидностей опасного хрупкого разрушения, вызывающая ухудшение механических свойств и приводящая к внезапным отказам металлических компонентов. Падению прочности и пластичности под воздействием водорода подвержено большинство конструкционных металлов и сплавов, взаимодействующих с ним.

В настоящий момент истинный механизм водородной хрупкости остается неизвестным. В научном сообществе на этот счет существуют два принципиально разных мнения. Согласно одной точке зрения, водород провоцирует хрупкое разрушение. Такое же разрушение происходит, например, когда металл становится хрупким под действием низких температур, – поясняет Евгений Мерсон. – Есть и противоположное мнение: на самом деле водород в микрообъеме не охрупчивает, а наоборот, пластифицирует материал, и на микроскопическом уровне рост трещин с участием водорода происходит, скорее, по вязкому механизму.

В связи с этим тольяттинские учёные выдвинули гипотезу: если при низких температурах и водородной хрупкости механизм разрушения образцов металла одинаковый, то поверхность разрушения и путь трещин относительно микроструктуры стали в этих двух случаях должны также иметь одинаковые признаки.

Чтобы это проверить, мы взяли образцы чистого железа, сплава железо-кремний (Fe-2.5%Si) и низкоуглеродистой стали. Каждый образец растягивали в разрывной машине и одновременно насыщали водородом, под действием которого на поверхности начинали расти трещины. Затем эти же образцы быстро доламывали в жидком азоте, провоцируя истинно хрупкое разрушение. В финале эксперимента исследовали поверхности разрушения образцов с применением нашей уникальной методики количественного фрактографического анализа, – рассказал Евгений Мерсон.

В итоге сотрудники НИИПТ ТГУ установили, а также количественно и качественно подтвердили: участки поверхности разрушения, образованные под действием водорода и в результате классического низкотемпературного охрупчивания, принципиально отличаются друг от друга.

«В дальнейших наших исследованиях мы попытаемся проверить, действительно ли водород стимулирует вязкое разрушение металла», – добавляет Евгений Мерсон.

Разработка сталей, устойчивых к водородной хрупкости, актуальна для всех сфер, где они используются в конструкционных решениях и подвержены исключительно высокому риску разрушения под действием водородосодержащих сред.

В первую очередь, это активно развивающаяся водородная энергетика с разработкой установок генерации водорода, а также технологий и оборудования для хранения и использования водорода для распределённой и автономной энергетики. Именно этим занимаются участники консорциума «Водородная энергетика», инициированного Тольяттинским госуниверситетом, которые объединились с целью ускорения вывода на рынок инновационных продуктов на базе водородных технологий.

Добавим, что результаты исследования водородной хрупкости учёными опорного ТГУ также пригодятся в нефтегазовой, химической и атомной отраслях промышленности. Данные эксперимента в перспективе могут быть использованы при разработке физико-математических моделей для расчёта долговечности стальных изделий, работающих в условиях риска развития водородной хрупкости, а также при разработке сталей, устойчивых к водородной хрупкости.

Исследование проведено при грантовой поддержке Российского научного фонда. Эксперимент описан в статье, опубликованной в высокорейтинговом научном журнале Materials Science and Engineering: A (входит в перечень Q1).

Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 5 (5 votes)
Источник(и):

Научная Россия