В КФУ разработан метод идентификации микропластика в клетках человека

Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.

Какое-то время продолжим трудится на общее благо по адресу https://n-n-n.ru.
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.

Спасибо, ждём вас на N-N-N.ru

Ученые научно-исследовательской лаборатории «Бионанотехнологии» Института фундаментальной медицины и биологии Казанского федерального университета разработали автоматический метод идентификации микропластических частиц внутри живых клеток и организмов. Работа выполнена в рамках гранта Российского научного фонда.

Научные результаты опубликованы в журнале Analytical and Bioanalytical Chemistry.

В мире ежегодно растет объем пластиковых отходов, которые в результате воздействия природных факторов постепенно распадаются на микро- и наноразмерные частицы. Эти частицы обнаруживаются практически повсюду, в том числе в живых организмах.

«Чтобы исследовать, как микропластик влияет на организм человека и животных, надо научиться его детектировать. Наша задача – выяснить, какие частицы пластика лучше проникают в живой организм, какие хуже, где они локализуются, как отличить один вид пластика в организме от другого», – говорит руководитель проекта РНФ, научный сотрудник НИЛ «Бионанотехнологии» Гульнур Фахруллина.

Разработанный в КФУ метод основывается на изображениях, полученных с помощью темнопольной микроскопии. Для расшифровки этих изображений ученые используют искусственный интеллект.

«В качестве модельных образцов микропластика нами были использованы пигментированные различными красителями полистироловые частицы, которые инкубировались вместе с клетками. Затем, для явной визуализации частиц в растворе и клетках, мы применили высококонтрастную микроскопию темного поля. Полученные данные были загружены в модель остаточной нейронной сети (ResNet) для ее обучения и тестирования. Нейросетевая модель позволила определить класс частиц с точностью, сопоставимой с методом идентификации по спектральным характеристикам», – рассказала Г. Фахруллина.

По словам биолога, разработанный в КФУ подход можно использовать в случае необходимости скрининга микропластика во множестве образцов. Он является высокочувствительным и позволяет значительно сократить время получения данных; так, для него не требуется производить гиперспектральную съемку.

«Темнопольная микроскопия позволяет получать изображения с большим количеством отличительных черт для очень небольших объектов. В светлом поле микрочастицы или вообще не видны, или видны как однородные, без каких-либо особенностей. Чем больше информации о частицах содержат изображения, тем проще нейросетям их использовать, а значит, результаты будут точнее», – объяснил участник проекта, аспирант ИФМиБ Ильнур Ишмухаметов.

Точность определения пигментированных частиц полистирола с диаметром 1 микрон с помощью методики, созданной в КФУ, составляет 93 процента. Технология, по словам разработчиков, будет улучшаться в процессе совершенствования используемых алгоритмов искусственного интеллекта.

Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 5 (1 vote)
Источник(и):

КФУ