В Кольском научном центре изучили возможность переработки отработавшего ядерного топлива в солевых расплавах
Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.
Какое-то время продолжим трудится на общее благо по адресу
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.
Спасибо, ждём вас на N-N-N.ru
Сотрудники Института химии редких элементов и минерального сырья имени И. В. Тананаева Кольского научного центра РАН исследуют электрохимические свойства галогенидов самария для разделения актиноидов и лантаноидов при переработки отработавшего ядерного топлива.
Долгосрочная устойчивость ядерной энергетики требует создания топливного цикла нового типа, в котором все использованное топливо будет перерабатываться и утилизироваться. Одним из перспективных считается проект ядерного реактора на расплавах солей (жидкосолевого реактора). Активная зона в нем сформирована из однородной расплавленной смеси фторидов или хлоридов щелочных металлов и фторида делящегося материала (плутония, тория или урана). Топливо одновременно служит теплоносителем первого контура.
Идея жидкосолевого реактора возникла в середине XX века, но уже к 1970–80-м годам прошлого века разработки прекратились. В 1960-е годы в Окриджской национальной лаборатории был создан реактор тепловой мощностью 7,4 МВт, работавший на смеси фторидов урана в расплаве солей лития, бериллия и циркония. Однако через пять лет в связи с нерентабельностью его остановили, как и сами исследования.
Интерес к подобным устройствам вернулся к началу XXI века одновременно в разных странах. В первую очередь это связано с истощением запасов традиционного ядерного топлива. Опасность для природы и высокая стоимость захоронения отработавшего топлива также побуждают к поиску альтернативных атомных технологий.
Жидкосолевой реактор имеет принципиальные преимущества по сравнению с привычным типом твердотопливного реактора с водяным охлаждением. Он работает при намного меньшем давлении в активной зоне и более высокой температуре, что позволяет увеличить надежность и реализовать работу на изотопах тория и других актиноидов, тем самым дожигая отходы ядерного производства.
В ториевый ядерный цикл не включен плутоний – это снижает риск распространения ядерного оружия. Кроме того, конструкция реактора позволяет добавлять новое и удалять отработанное топливо без остановки процесса. Однако для этого рекомендуется перерабатывать отработавшее ядерное топливо непосредственно на электростанциях. Важный этап такой обработки — эффективное разделение лантаноидов и актинидов.
До сих пор эти элементы, присутствующие в ядерных отходах, разделялись с помощью гидрометаллургических процессов. Широко используемая технология PUREX позволяет извлекать только уран и плутоний и не может отделить трехвалентные трансурановые элементы, такие как америций и кюрий, от трехвалентных продуктов деления, представленных лантаноидами. На международном уровне ведутся исследования пирохимических процессов, цель которых — разделение актиноидов и лантаноидов при переработки отработавшего топлива путем электрорафинирования в расплавленных солях.
Изучение галогенидов лантаноидов представляет особый интерес для переработки отработавшего ядерного топлива, поскольку лантаноиды принадлежат к группе наиболее распространенных элементов деления в ядерных реакторах. Многие лантаноиды имеют большое эффективное сечение захвата нейтронов, и их присутствие в топливе существенно снижает эффективность ядерной реакции.
Ученые Института химии редких элементов и минерального сырья имени И. В. Тананаева занимаются систематическим изучением транспортных и электрохимических свойств галогенидов лантаноидов, включая галогениды самария в различных солевых расплавах. Результаты этих исследований были опубликованы в престижном журнале Journal of The Electrochemical Society в 2021 году.
Электрохимия трихлорида и трифтрорида самария изучалась в расплавах галогенидов щелочных металлов. Авторы определили коэффициенты диффузии комплексов Sm(III) и Sm(II), формальныe стандартные редокс потенциалы и стандартные константы скорости переноса заряда редокс пары Sm (III)/Sm (II).
Исследователи выявили условия, при которых процесс восстановления является обратимым, и установили зависимости транспортных и кинетических свойств от состава первой и второй координационной сферы комплексов самария. Эксперименты еще не завершены. Полученные в ходе исследований результаты важны для создания технологии переработки отработавшего ядерного топлива электрорафинированием в солевых расплавах.
- Источник(и):
- Войдите на сайт для отправки комментариев