Wetware: молекулярные вычисления и клеточные машины

Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.

Какое-то время продолжим трудится на общее благо по адресу https://n-n-n.ru.
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.

Спасибо, ждём вас на N-N-N.ru

С учетом того, что закон Мура является всего лишь эмпирическим наблюдением и упирается в физическую вместимость микропроцессора, то есть, в количество транзисторов, которые можно уместить на единицу площади, вполне логично, что программно-аппаратная инженерия пытается уйти от традиционных носителей информации на материале соединений кремния. Тем более, что срок действия закона Мура явственно подходит к концу.

Возможной альтернативой для вычислительной неорганики много лет мыслится вычислительная органика. То есть, теоретически, а также (возможно) практически должны быть варианты хранения информации в белках и нуклеиновых кислотах. Тем более, что нуклеиновые кислоты в природе превосходно справляются с кодированием и передачей информации.

Сразу оговоримся, что для информации нужно не только хранилище; нужен еще и процессор, а также устройства ввода-вывода. Поскольку до создания подобной инфраструктуры еще очень далеко, тема казалась бы спекулятивной, но в январе 2021 года в журнале «Nature of Chemical Biology» была опубликована статья, описывающая довольно простую технологию кодирования 3-битных информационных последовательностей в ДНК. Вот о чем она.

Двойная спираль. Винтовая лестница в обход закона Мура

В современном мире постоянно генерируется все больше данных, и исследователи как могут изобретают новые способы их хранения. ДНК по-прежнему считается весьма перспективной в качестве исключительно компактного и устойчивого носителя информации. А прямо сейчас формируется новый подход, позволяющий записывать цифровые данные непосредственно в геномы живых клеток.

Попытки переориентировать технологии запоминания данных, изобретенные природой, не новы, но в последнее десятилетие интерес к таким подходам оживился, и уже есть заметные достижения в этой области. Ситуация вызвана взрывным ростом генерируемых данных, причем, нет никаких признаков его замедления. Предполагается, что в 2025 году во всем мире ежедневно будет создаваться 463 эксабайт данных.

Хранение всех этих данных с применением кремниевых технологий вскоре может стать непрактичным, но выход может заключаться в использовании ДНК. Во-первых, плотность информации ДНК в миллионы раз выше, чем на обычных жестких дисках. Всего в одном грамме ДНК можно хранить до 215 миллионов гигабайт данных.

Кроме того, при правильном хранении ДНК исключительно стабильна. В 2017 году ученым удалось полностью восстановить геном лошади (вымершего вида), жившей 700 000 лет назад. Научившись хранить данные и обращаться с ними на том же языке, который используется в природе, мы открываем путь к множеству новых биотехнологических возможностей.

Основная сложность заключается в том, чтобы найти интерфейс между цифровым миром информатики и биохимическим миром генетики. В настоящее время для этого требуется синтезировать ДНК в лаборатории, и этот процесс по-прежнему дорогой и сложный, хотя, стоимость синтеза ДНК быстро снижается. Полученные последовательности затем тщательно хранятся in vitro, пока не потребуется вновь к ним обратиться, либо их можно внедрять в живые клетки при помощи технологии CRISPR, предназначенной для редактирования генов.

CRISPR – это популярная новая технология редактирования геномов, именно за нее была вручена Нобелевская премия по химии в 2020 году. Аббревиатура CRISPR означает «короткие палиндромные повторы, регулярно расположенные группами». Подробнее о ней можно почитать в замечательной свежей статье на Хабре.

Здесь же оговоримся, что в интересующем нас контексте криспры могут использоваться так: бактерий стимулируют электрическим сигналом, заставляя таким образом вставлять в ДНК заранее определенные последовательности, соответствующие нулям и единицам. Статья об этом была опубликована 24 января 2021 года.

Отметим, что применение электрических сигналов для встраивания криспров – это инновационный метод, ранее применялись только биохимические взаимодействия, например, индуцируемые фруктозой. Кроме того, хранение информации в клетках кишечной палочки исключительно эффективно – согласно более раннему источнику, в клетках кишечной палочки можно зашифровать 1019 бит информации на кубический сантиметр. При дальнейшей экстраполяции можно вычислить, что ДНК, необходимую для хранения всех данных, имевшихся в распоряжении человека на 2017 год, можно уложить в виде куба с гранью 1 м.

Остановимся подробнее на описании этого эксперимента
Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 5 (1 vote)
Источник(и):

Хабр