Физики проверили теорию с помощью колебаний гелиевого конденсата

Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.

Какое-то время продолжим трудится на общее благо по адресу https://n-n-n.ru.
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.

Спасибо, ждём вас на N-N-N.ru

Физики поставили новый рекорд точности в измерении частоты атома гелия в состоянии 23S1, при которой его динамическая поляризуемость равна нулю. Для этого они определяли частоту колебания бозе-эйнштейновского конденсата в комбинированной магнито-оптической ловушке. Полученный результат отличается от расчетов на 1,7 стандартного отклонения.

Исследование опубликовано в Science.

Уже больше века мы знаем, что энергия атомов может принимать лишь дискретные значения. Переход между атомными уровнями сопровождается поглощением или испусканием одного (реже нескольких) фотонов. Для этого частота фотона должна соответствовать разнице в энергиях уровней (условие резонанса).

Этот принцип лежит в основе атомной спектроскопии. Прогресс в этом направлении сделал возможным измерение тончайших энергетических нюансов в атомах и послужил стимулом к развитию квантовой теории. В конце концов, этот процесс вылился в «гонку» между экспериментом и теорией взаимодействия света и вещества — квантовой электродинамикой. Достижение точности в двенадцатом знаке после запятой позволило обнаружить несоответствие между радиусом протона, полученным в рамках различных экспериментов с обычным и мюонным водородом (подробнее про эту проблему читайте в материале «Щель в доспехах»).

Между тем, нерезонансное взаимодействие атомов с лазерным полем также представляет большой интерес. В этом случае уровни атомов испытывают динамический штарковский сдвиг, пропорциональный интенсивности света. Знак этого сдвига противоположен знаку динамической поляризуемости атома — параметра, чья зависимость от частоты определяется близостью к атомным резонансам. Динамический штарковский сдвиг лежит в основе работы некоторых оптических пинцетов и ловушек, заставляющих атомы стремиться в область максимальной интенсивности света.

В межрезонансной области важными оказываются два типа частот. Один тип частот, называемых «магическими», относится к конкретному переходу. При «магических» частотах разность динамических поляризуемостей верхнего и нижнего состояния равна нулю, что позволяет существенно увеличить время когерентности и сделать стабильнее оптические часы. При другом типе частот нулю оказывается равна динамическая поляризуемость и сдвиг того уровня, в котором находится атом (их еще называют «tune-out frequencies», тюн-аут-частоты). Измерение таких частот также может служить проверкой предсказаний квантовой электродинамики, поэтому такие работы активно ведутся.

Группа физиков из Австралии, Канады и Китая при участи Кена Болдуина из Австралийского национального университета провела точные измерения тюн-аут частоты атома гелия в метастабильном состоянии 23S1, измеряя колебания гелиевого конденсата, запертого в магнитно-оптической ловушке.

Подробнее
Пожалуйста, оцените статью:
Пока нет голосов
Источник(и):

N+1