Физики создали радиевые оптические часы

Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.

Какое-то время продолжим трудится на общее благо по адресу https://n-n-n.ru.
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.

Спасибо, ждём вас на N-N-N.ru

Американские физики сообщили о создании оптических атомных часов на основе иона радия. Они добились относительной неопределенности измерения частоты, равной 9×10−16. Радиевые часы позволили ученым впервые измерить отношения факторов Ланде D5/2 и S1/2 состояний.

Исследование опубликовано в Physical Review Letters.

Атомными часами называют устройства для измерения времени с помощью точного определения частот атомных переходов. Эталоном в этой области стали часы на основе цезия-133 с частотой сверхтонкого перехода равной 9,2 гигагерца. Со временем физики перешли к оптическим частотам, что позволило существенно повысить точность. Сегодня оптические атомные часы помогают ученым искать темную материю, проверять постоянство физических констант со временем и исследовать нарушения принципа эквивалентности Эйнштейна.

Чтобы повысить производительность часов и увеличить их чувствительность, физики перебирают различные атомы в качестве рабочего тела. Для этого, однако, надо сначала научиться эффективно охлаждать и пленять атомы в ловушки. Недавно группа экспериментаторов научилась это делать с ионами радия Ra+. Они предположили, что этот ион может быть хорошим кандидатом для создания оптических атомных часов.

Проверить это предположение решила группа американских физиков при участии Эндрю Джеича (Andrew Jayich) из Калифорнийского университета в Санта-Барбаре. Им удалось создать такие атомные часы на переходе 7s2S1/2 – 6d2D5/2 иона 266Ra+ с относительной неопределенностью измерения 9×10−16 и частотной нестабильностью, равной 1,1×10−13 на корень квадратный от времени измерения. Собранная установка позволила впервые измерить отношения факторов Ланде D5/2 и S1/2 состояний.

Для захвата одиночного иона авторы использовали квадрупольную ионную ловушку. Ловушка захватывала частицу, образующуюся в результате лазерной абляции мишени из хлорида радия, которую физики располагали в 15 миллиметрах от центра ловушки. В качестве часового перехода они использовали переход 7s2S1/2 – 6d2D5/2, состоящий из нескольких зеемановских компонент. Зеемановское расщепление возникает в присутствии магнитного поля симметрично относительно невозмущенной частоты. Это позволило физикам компенсировать его влияние на измерение центральной частоты. Чтобы уменьшить ошибки, связанные с флуктуациями поля, они синхронизировали измерения с частотой электрического тока равной 60 герц, которым питается установка.

chasy1.png(a) Схема энергетических уровней иона радия. Красным цветом обозначен часовой переход; голубым и серым – переходы, используемые для контроля населенности; желтым – переход, используемый для возврата в исходное состояние. (b) Схема установки. / C. A. Holliman et al. / Physical Review Letters, 2022

Авторы проводили измерения центральной частоты для различных длительностей протокола и строили соответствующую дисперсию Аллана, которая позволяет оценивать стабильность часов. Ее поведение убывало по закону обратного квадратного корня от времени с коэффициентом 1,1×10−13. Они также исследовали все факторы, которые вносят вклад в неопределенность измерения частоты. Наибольшими из них оказались переменный эффект Штарка, сдвиг, вызванный окружающим чернотельным излучением, и нескомпенсированные флуктуации магнитного поля. Их учет дал относительную неопределенность, равную 9×10−16.

Данные об измерении всех компонент позволили физикам вычислить отношение факторов Ланде D5/2 и S1/2 состояний. Фактор (множитель) Ланде определяет амплитуду зееманского смещения уровня для некоторого магнитного поля в зависимости от его квантовых чисел. Чтобы вычислить их отношение, авторы следили за тем, как эти смещения зависят от магнитного поля в течение измерений, и усредняли их по всем зеемановским компонентам. Это позволило получить значение, равное 0,5988053(11).

Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 5 (1 vote)
Источник(и):

N+1