Имитация человека: как нейросети смогут нас убедить

Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.

Какое-то время продолжим трудится на общее благо по адресу https://n-n-n.ru.
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.

Спасибо, ждём вас на N-N-N.ru

Нейросети учатся у людей писать картины и сочинять музыку, и это все еще выглядит забавным трюком машинного обучения. Но это лишь прелюдия. Она закончится, когда нейросети станут учиться тому, как люди рискуют, делают выбор и как используют мораль. Такие исследования уже идут, и данные для обучения мы создаем сами, зачастую даже не зная об этом.

Naked Science пытается представить, зачем нужны нейросети, имитирующие нашу манеру рассуждений и поведения, кто от этого выиграет и чего стоит опасаться.

Программа, созданная исследователями из Университета Торонто, Корнеллского университета и Microsoft Research, по набору шахматных партий угадывает, кто их сыграл. Она вычисляет автора по ходам и может отличить его на фоне партий тысяч других шахматистов, регулярно играющих на популярном сервере Lichess. В сущности, она определяет присущий игроку стиль принятия решений.

Любители шахмат давно знают, что у гроссмейстеров есть свой узнаваемый игровой почерк. Кто-то играет напористо и не боится рисковать, а кто-то осторожничает и выжидает ошибок соперника. Есть те, кто силен в дебютах, а другие, наоборот, особенно опасны в эндшпилях, когда на доске уже мало фигур. Словом, каждый шахматист уникален, и в его выборе ходов есть что-то такое, что отличает его от всех прочих. Оно столь же неповторимо, как отпечаток пальцев, этакий «отпечаток» стиля. Как раз его и улавливает программа, только ей все равно, кто делает ходы, мастер или начинающий любитель. Она легко распознает всех.

Решающий вклад здесь за машинным обучением — авторы взяли записи партий игроков, сыгравших на Lichess не менее тысячи раз, и отобрали из этих партий последовательности до 32 ходов. Каждый ход — смену позиции — они кодировали в виде чисел и передавали в нейронную сеть, а та представляла любую игру как точку в многомерном пространстве. Для нейросети все партии шахматиста — скопление точек (или кластер). Её учили максимизировать плотность кластера каждого игрока и расстояние между кластерами разных игроков.

Так нейросеть научилась различать людей — по тому, как ходы их партий сходятся в кластеры. Этот кластер и есть индивидуальный стиль конкретного игрока, который не всегда выражен явно, но машина его видит. Причем она различает игроков с высоким рейтингом, даже если ее обучить только на партиях любителей, и наоборот. Программа в самом деле ловит индивидуальность.

Авторы исследования считают, что то же самое можно провернуть с покером. Или, говорят они, при наличии правильных данных такая программа могла бы идентифицировать людей по манере вождения автомобиля или времени и месту использования мобильного телефона.

neyroseti1.pngИгра в «живые шахматы», Испания, 2010. ИИ способен собрать данные и по такой игре. / © Interes touristico National

Словом, вместо набора ходов в шахматах могут быть любые цифровые следы. Любая достаточно длинная (оцифрованная) история поведения потенциально содержит данные для обучения таких программ. Человек узнается по характерным цепочкам действий просто в силу того, что мы разные, и каждый из нас, пусть даже в мелочах, чем-то отличается от других. И если раньше, чтобы запутать следы, можно было попытаться исказить почерк или голос, то изменить стиль принятия решений гораздо труднее, это все равно что подменить свою психику. Притом заранее не известно, какие признаки сеть выделяет и что конкретно надо маскировать.

От поиска стиля к предсказанию: игры и моделирование людей

Авторы программы обеспокоены тем, что их подход годится не только для шахмат, но и легко переносится в другие области: нейросеть можно обучить на любых доступных данных, и тут не все гладко с этикой. Ведь не только мошенники, но и обычные люди зачастую желают остаться анонимными, и вовсе не обязательно со злым умыслом. Машинное обучение сделает их видимыми.

В теории это означает, что вход в сеть под чужим IP уже не поможет — любого человека можно будет вычислить по присущему ему уникальному стилю, в чем бы он ни выражался.

Правда, это пока лишь в теории. На практике все не так просто: для обучения искусственного интеллекта сперва нужно собрать размеченные данные, то есть отдельно записывать цифровые следы каждого из множества миллионов людей, присутствующих в интернете, и желательно в течение месяцев. И далее постоянно отслеживать их по сети. Это требует серьезных вычислительных мощностей, а они, в свою очередь, требуют дополнительной энергии. Наконец, люди гуляют по разным сайтам, и связать их истории можно, лишь если эти сайты активно обмениваются данными между собой, что вряд ли реализуемо (кроме ряда исключений — сайтов, входящих в большие корпорации, как «Инстаграм» и «Фейсбук», например).

Такими данными могут обеспечить себя крупные площадки с огромной аудиторией. Они в основном и будут собирать цифровые следы посетителей, но в первую очередь не для того, чтобы раскрыть их личности: гораздо перспективнее использовать эти следы для изучения и предсказания поведения (например, из маркетинговых соображений). Социальные сети — подходящий полигон для этого. Но наилучший — массовые онлайн-игры.

Игра эффективно раскрывает свойства психики. В ходе игры люди принимают множество решений и взаимодействуют с другими игроками в сложной и быстро меняющейся ситуации. Им приходится мыслить тактически и стратегически. Им приходится учиться и набираться опыта. В некоторые игры люди играют годами, а значит, накапливают богатую историю своих действий. Что еще важно, в такие игры играют миллионы пользователей. Все это создает огромные объемы статистики, ее с лихвой хватит для машинного обучения.

Те, кто начал играть подростком, могут продолжать и спустя много лет, развиваясь вместе с игровой вселенной. За это время их уникальный стиль принятия решений будет глубоко изучен и определен, и такая информация может впоследствии стать очень ценной. Иногда бывшие подростки становятся лидерами бизнеса, крупными чиновниками, политиками, военачальниками высокого ранга. Машина, обученная на большом массиве данных, будет не просто знать, в какой манере они думают и действуют, она поможет строить прогнозы на их счет. Конечно, точность прогноза зависит и от того, сохранят ли люди свой стиль принятия решений на дистанции десятков лет. На этот вопрос трудно ответить однозначно, но лонгитюдные исследования показывают, что основные черты личности довольно стабильны с юности и до зрелости. Если молодая девушка склонна к рефлексии, она будет копаться в себе и в старости. Если юноша излишне впечатлителен, то с возрастом не утратит это свойство.

Нюансы можно сгладить или развить, но ядро психики изменить трудно. Можно обоснованно ставить на то, что особенности мышления и восприятия, как и темперамент, люди пронесут с собой всю жизнь. И если программы научатся эти особенности ловить, это обещает глубокие последствия.

Ведь сила нейронных сетей не только в том, что они находят скрытые паттерны в наборе данных, они еще могут воспроизводить эти паттерны. Шахматная программа, созданная в Университете Торонто, способна играть так, как играют люди, предсказывать ходы конкретного шахматиста и даже предвидеть типичные ошибки, которые тот совершит в партии. Она знает, какие ошибки допускают игроки на разных уровнях мастерства, и может указать уровень, на котором люди перестают их совершать.

Иными словами, программа не ищет лучший ход для данной позиции — она предлагает ходы, которые сделал бы человек. Она моделирует процесс принятия решений шахматистами. Это и есть прогнозирование.

От предсказаний к влиянию: машины как психологи

Не стоит надеяться, что дело ограничится искусственной средой шахмат. В прошлом году психологи из Принстона опубликовали в журнале Science статью «Использование крупномасштабных экспериментов и машинного обучения для открытия теорий принятия решений человеком». Авторы обучили нейросеть на большой базе данных, собранной разными учеными за много лет. В ней содержатся результаты психологических экспериментов о том, как люди делают рискованный выбор, включая азартные игры — всего более 10 000 разных ситуаций, в которых испытуемые принимали те или иные решения.

Оказалось, обученные нейронные сети способны с высокой точностью имитировать решения человека, и они значительно превосходят ранее предложенные в психологии модели рискованного выбора.

Так машинное обучение помогло психологам создать новую, более эффективную теорию поведения, которую раньше разработать не удавалось. И это не удивительно: в попытках объяснить выбор людей специалисты выдвигают гипотезы и полагаются на свою интуицию, но она ограничена экспериментами, которые человеческий ум способен охватить. Ни один психолог не в состоянии перелопатить огромную базу данных, где собраны решения сотен тысяч участников в тысячах разных ситуаций выбора.

Для искусственного интеллекта это не составит труда.

Как насчет моральных проблем?

Подробнее
Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 5 (1 vote)
Источник(и):

Naked Science