Компьютер из ткани: струйная логика в одежде

Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.

Какое-то время продолжим трудится на общее благо по адресу https://n-n-n.ru.
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.

Спасибо, ждём вас на N-N-N.ru

Блог компании ua-hosting.company. В последнее время участились попытки превратить повседневные предметы в их умные эквиваленты. У нас уже есть умные пылесосы, умные холодильники, умные часы и даже умный текстиль. Внедрение электроники в элементы гардероба позволяет создавать одежду, способную считывать биоданные человека, помогать людям с ограниченными возможностями и даже собирать энергию. Любая такая разработка нуждается в электронных компонентах, которые будут выполнять определенную логическую функцию.

А что если заменить их на полностью текстильные? Именно это и сделали ученые из университета Райса (Хьюстон, США). Они внедрили струйную логику в текстиль, создав умную одежду. Что такое струйная логика, как именно она была внедрена в текстиль, и на что способна полученная в результате одежда? Ответы на эти вопросы мы найдем в докладе ученых.

Основа исследования

Текстиль является неотъемлемой частью нашей цивилизации уже на протяжении тысяч лет. А с появлением носимой электроники и робототехники текстиль, используемый в производстве одежды, стал одним из самых перспективных вариантов для создания мягких приводов, предназначенных для работы в качестве роботизированных «мышц». Такие устройства помогают людям выполнять вполне обыденные действия (встать, взять предмет, поднять руку). Но это не вопрос лени, а вопрос физических возможностей, которые у некоторых людей ограничены ввиду травмы, врожденного или приобретенного дефекта.

Большинство таких актуаторов (приводов) на основе текстиля приводятся в действие с помощью тросов или сухожилий с механическим приводом, с помощью мешочков, надуваемых жидкостью под давлением, или путем внедрения в ткань нитей, меняющих форму, которые реагируют на тепловые, электрические, оптические или химические раздражители. В то же время достижения в области материалов и методов изготовления позволили создать ряд носимых текстильных датчиков, которые могут определять силу, давление, деформацию, температуру и влажность.

Но, несмотря на такой прогресс, большинство важных компонентов таких устройств продолжают изготавливать не из текстиля, а других материалов. А системы контроля и управления этих актуаторов до сих пор зависят от жестких и громоздких компонентов, таких как печатные платы (PCB от printed circuit board) и массивы электромеханических клапанов. Альтернативные методы основаны на использовании внешних устройств, но это сильно ограничивает мобильность пользователя.

Решением всех этих проблем может быть струйная логика — технология построения логических схем на основе явлений гидравлики или пневматики. Загвоздка в том, что существующие мягкие клапаны основаны на изначально трехмерной архитектуре и не могут быть перенесены на гибкие двумерные листы, что исключает их реализацию с использованием текстиля. Кроме того, эластомерная конструкция этих клапанов не позволяет их бесшовную интеграцию с одеждой.

В рассматриваемом нами сегодня труде ученые решили восполнить этот пробел, создав систему, где цифровая струйная логика встраивается в полностью текстильную основу. Для этого был разработан текстильный компьютер, который принимает пользовательский ввод, сохраняет данные в памяти и приводит в действие пневматические вспомогательные устройства на основе встроенной булевой логики*.

Булева логика* — это форма алгебры, основанная на трех простых словах, известных как логические операторы: «OR», «AND» и «NOT». В основе булевой логики лежит идея о том, что все значения либо истинны, либо ложны.

Созданные текстильные логические модули гибкие и легкие, их можно интегрировать в обычную одежду, они выдерживают десятки тысяч циклов, устойчивы к стирке и небрежному обращению, а также могут последовательно объединяться в цепь для реализации широкого спектра логических функций.

Результаты исследования

Создание текстильного логического элемента

odezhda1.pngИзображение №1

Комбинируя элементарные логические блоки, которые на базовом уровне являются тканевыми инверторами или «NOT» вентилями, были построены схемы струйной логики. Каждый инвертор, в свою очередь, состоит из пневматического переключателя или реле, соединенного с выходным резистором. Эта архитектура напоминает электронные инверторы семейства p-канальной логики металл-оксид-полупроводник (или PMOS от p-channel metal-oxide-semiconductor).

Демонстрация текстильного инвертора.

Инвертор (1B и 1C; видео №1) имеет три пневматических соединения, а именно: порт питания (или впускной), входной порт и выходной порт. Впускной порт получает сжатый воздух при постоянном давлении (PS) в 50 кПа. Поскольку текстильная логическая платформа использует пневматические сигналы, логические уровни определяются на основе давления воздуха. Высокий логический уровень (или двоичная 1) определяется как давление P в диапазоне 0.8 ≤ P/PS ≤ 1, а логический низкий уровень (или двоичный 0) — как давление близкое к атмосферному в диапазоне 0 ≤ P/PS ≤ 0.1.

Устройства были изготовлены путем термосваривания слоев нейлоновой тафты, покрытой с одной стороны слоем термопластичного полиуретана, который делает ткань непроницаемой и обеспечивает прочную и газонепроницаемую межслойную адгезию.

Ключевым компонентом текстильного инвертора является пневматическое реле (то есть нормально открытый гидравлический клапан), которое изолирует порт подачи от выхода, когда входной порт находится под давлением. Традиционно мягкие клапаны в струйной логике используют одну из двух общих парадигм проектирования, которые ученые называют «пережимной» и «перегибной» конструкциями клапанов.

Пережимные клапаны напрямую используют давление жидкости в линии управления, чтобы деформировать гибкую стенку прилегающего мягкого канала и тем самым ограничить поток в выходной линии. Несмотря на простоту конструкции, эти клапаны обычно влекут за собой перепад давления жидкости между сигналами управления и выходными сигналами, что ограничивает возможность последовательного включения вентилей.

С другой стороны, перегибные клапаны прилагают осевые или поперечные силы, вызывая искривление мягкого канала, создавая перегиб, который перекрывает поток. Этот механизм, основанный на упругой нестабильности, допускает переключение выходного давления, превышающего давление входного сигнала, и обеспечивает резкий и гистерезисный переход клапана.

В результате была создана весьма надежная конструкция клапана.

Подробнее
Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 5 (1 vote)
Источник(и):

Хабр