Красноярские ученые собрали единственный в России прибор для самой большой охлаждаемой антенны в космосе
Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.
Какое-то время продолжим трудится на общее благо по адресу
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.
Спасибо, ждём вас на N-N-N.ru
Ученые ФИЦ «Красноярский научный центр СО РАН» создали уникальный прибор, с помощью которого можно измерять малые деформации материала, вызванные изменением температуры, электрическим и магнитным полем, внешним давлением. Прибор собран по заказу АО «Информационные спутниковые системы» (ИСС) и используется для разработки российского космического телескопа «Миллиметрон».
«Миллиметрон» – это один из высокотехнологичных российских научных проектов в космосе. Он должен стать единственной в мире космической обсерваторией миллиметрового и субмиллиметрового диапазона длин волн в ближайшие 10–20 лет, что сделает Россию мировым лидером в важнейшем направлении космических исследований. Запуск телескопа с охлаждаемым десятиметровым зеркалом запланирован на 2030 год. Это будет самая большая охлаждаемая антенна в космосе.
Для сравнения: диаметр зеркала космического телескопа им. Джеймса Уэбба (JamesWebbSpaceTelescope, JWST) равен 6.5 м. Разумеется, прямое сопоставление здесь не совсем корректно, поскольку JWST работает в ближнем и среднем ИК-диапазонах электромагнитного излучения (длина волны 0,6–28 мкм), более близких к видимому свету и предъявляющих более высокие требования к точности геометрии и чистоте обработки поверхности зеркала. «Миллиметрон» рассчитан на дальний ИК и субмиллиметровый диапазон (0,1–10 мм, то есть 100–10000 мкм), более близкий к радиоволнам, поэтому его главное зеркало также называют антенной, хотя чистота обработки ее поверхности и точность геометрии также должны быть очень высоки.
«Миллиметрон» и JWST скорее дополняют друг друга, чем конкурируют, однако от сравнений не уйти. Слишком много у проектов общего: работа в окрестности точки L2 в 1,5 млн км от Земли; использование раскрываемых на орбите зеркал, поскольку под обтекателями ракет их можно уместить только в сложенном виде; охлаждение до криогенных температур; управление геометрией «лепестков» зеркал с помощью высокоточных актуаторов; огромные теплоизоляционные экраны, прикрывающие телескопы от Солнца; близкая масса космических аппаратов – 6,5 тонны у JWST и 6,6 тонны у «Миллиметрона»; схожие габариты – около 20 м.
Для того чтобы проект был успешно реализован, очень важно провести все необходимые исследования и расчёты на Земле. О том, какие задачи в рамках этого проекта решают красноярские ученые, рассказал старший научный сотрудник лаборатории сильных магнитных полей Института физики им. Л.В. Киренского СО РАН, кандидат физико-математических наук Александр Фрейдман.
– Расскажите, пожалуйста, чем вы сейчас занимаетесь?
– «Миллиметрон» — это космическая обсерватория, которая будет располагаться на расстоянии 1,5 миллиона километров от Земли. Задач у этого проекта масса. Например, он будет ловить свет от ранних галактик, появившихся в первый миллиард лет после Большого взрыва, в то время свет от них был в ультрафиолетовом диапазоне. Так как Вселенная расширяется, объекты удаляются друг от друга и их скорость увеличивается, это излучение сместилось в инфракрасную зону. Чтобы их увидеть, нужно смотреть именно в этом диапазоне. Он будет работать не только в формате телескопа, но и в формате интерферометра, как удаленная пара для второй обсерватории, расположенной на Земле. Благодаря большому расстоянию между двумя обсерваториями на Земле и в космосе может быть достигнуто гигантское угловое разрешение.
Основная задача, которая возложена на Институт физики им. Л.В. Киренского СО РАН, — это исследование материалов, выяснение их пригодности для использования в таких условиях. Мы запускаем космический аппарат, собранный на Земле, у него есть свои размеры и характеристики. Когда он оказывается в космосе и раскрывается, начинает работать криогенная система, которая все охлаждает до температур, близких к абсолютному нулю. Все материалы реагируют на изменение температуры. Это нужно учесть для того, чтобы конструкция работала. Зеркало — это сложная система, ее нужно сделать очень точной. Чем более правильной будет геометрия, тем точнее мы сможем увидеть дальние объекты. Зеркало не может быть идеальным, потому что оно состоит из элементов. Такую конструкцию запустить целиком в космос нельзя, поэтому она будет состоять из деталей, которые будут раскрываться. Соответственно, мы не получим идеальное параболическое зеркало, оно все равно будет состоять из деталей, но эти детали обладают возможностью настройки. У каждого элемента есть несколько приводов, которые позволяют делать прогиб, изгиб, смещение.
Само зеркало будет работать при температуре –269 градусов Цельсия, а вот датчик, который ловит сигнал, — при температуре –272 градуса. Для того чтобы понять, как поведут себя материалы при столь низких температурах, мы и проводим эксперименты на Земле.
- Источник(и):
- Войдите на сайт для отправки комментариев