Нейросеть предсказала поведение лазерных импульсов
Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.
Какое-то время продолжим трудится на общее благо по адресу
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.
Спасибо, ждём вас на N-N-N.ru
Прохождение лазерного импульса через неоднородную среду — важнейший процесс, от возможности управлять которым зависит эффективность оптической связи. К сожалению, построить его математическую модель часто невозможно. Однако можно научить нейросеть предсказывать его результаты. Об этом свидетельствует новейшее российско-китайское исследование.
В двух идущих друг за другом подряд номерах международного научного журнала Chaos, Solitons and Fractals входящего в список топ-1, (тома 158 и 159 за 2022 год) опубликованы результаты нового российско-китайского исследования, одним из авторов которого является заведующий кафедрой прикладной математики НИЯУ МИФИ профессор Николай Кудряшов. Тема исследования чрезвычайно актуальна, поскольку связана с развитием многих самых продвинутых технологий на основе оптических солитонов.
Как пишет ведущий научный сотрудник «Курчатовского института» Сергей Сазонов, оптический солитон — это уединенный лазерный импульс определенной длительности (от нано — до фемтосекунд), обладающий несущей частотой видимого диапазона, и способный распространяться на большие расстояния в среде без изменения своей формы.
Важнейшее свойство солитонов заключается в том, что они обладают способностью упругого взаимодействия друг с другом. Если говорить совсем упрощенно, то «столкнувшиеся» солитоны не сливаются, а проходят друг через друга, сохраняя своих параметры, но с изменением фазы. Именно поэтому на солитоны возлагаются большие надежды в системах оптической связи. С укорочением длительности солитона может увеличиваться пропускная способность соответствующих информационных систем.
Не удивительно, что большое не только научное, но и прикладное значение имеет моделирование и предсказание «поведения» солитонов в оптических средах. Оптический солитон — это нелинейная уединенная волна, учитывающая влияние нескольких параметров и процессов, но, к сожалению, не всегда с ясной математической моделью.
Взаимодействие оптического солитона со средой — это типичный пример нелинейно-динамического, или, говоря иначе, хаотического процесса. Это система, которая во многих случаях испытывает возмущение внешних факторов и может перейти к хаотическому поведению, реагируя даже на мельчайшие изменения параметров среды.
К слову: типичный пример хаотического поведения системы — климатические изменения, которую возможно в самом лучшем случае предсказать лишь на несколько дней в перед, но никогда — на следующие несколько месяцев и на год. В этом смысле предсказывать поведение оптических солитонов для некоторых сред не проще, чем предсказывать атмосферные вихри.
Как объясняет Николай Алексеевич Кудряшов, закономерности, которые описывают динамику оптических солитонов при учете дисперсии высокого порядка описываются нелинейными дифференциальными уравнениями высокого порядка. Уравнениями этого типа Николай Алексеевич занимается уже около 30 лет. К сожалению, решить построить аналитические решения таких уравнений часто невозможно — иногда просто потому, что у нас нет достаточных вычислительных мощностей, а иногда и потому математическая модель при некоторых параметрах становится хаотической.
Значит ли это, что оптическому солитону — как и погоде в будущем году — суждено остаться совершенно непредсказуемым явлением? Есть русская пословица: клин клином вышибают. А для предсказания поведения хаотической системы можно использовать другую хаотическую систему.
Вот уже несколько десятилетий, специалисты по IT для моделирования человеческого мышления создают искусственный интеллект — нейросеть. Сложная нейросеть сама представляет собой скрытую нелинейно-динамическую систему, и не соответствует детерминированной математической модели. По сути, для ученых работа сконструированной ими нейросети представляет собой «черный ящик»: известны данные на входе и известны некоторые результаты на выходе, но нет детальной картины и понимания, как первые превращаются во вторые.
Однако, нейросеть обладает важнейшим полезным свойством: обучаемостью. Нейросети обучают на известных, и признанных «удачными» случаях, когда данные и на входе, и на выходе известны, и по аналогии с этими известными случаями учатся превращать входные данные в конечные. Именно этот метод в российско-китайском исследовании применили для моделирования оптических солитонов.
В качестве «базы обучения» использованы те случаи, когда описывающие динамику солитонов дифференциальные уравнения имеют аналитические решения при некоторых значениях параметров. В данном случае использовались реальные и сложные типичные нелинейные волновые модели, включая нелинейное уравнение нелинейное уравнение Шредингера и уравнения Кортевега-де Фриза. Ну и, самое главное — в этом собственно и заключается главное новшество, предложенное учеными — в структуру нейросети были включены дополнительные данные законов сохранения, что также послужило серьезным граничным условием: ответы, противоречащие законам сохранения, сразу исключаются.
«Как одно из важных интегрируемых свойств нелинейных физических моделей, закон сохранения может создать сильную ограничивающую силу для нейронной сети при решении нелинейных физических моделей», — говорится в аннотации статьи.
Результаты нейросетевого моделирования показали, что по сравнению с традиционными методами математического моделирования, основанными на детерминированных физических моделях, использование нейросетей и машинного обучения, позволяет предсказывать оптические солитоны и их параметры скрытых нелинейных математических моделей, часто не имеющих четкой математической постановки задачи общепринятой в математической физике.
Таким образом, на наших глазах возникает новый метод изучения решений нелинейных волновых моделей путем объединения глубокого машинного обучения, нейросетей и нелинейной математической физики.
- Источник(и):
- Войдите на сайт для отправки комментариев