Новосибирские ученые предложили новый способ стабилизации и интенсификации кипения в вакууме
Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.
Какое-то время продолжим трудится на общее благо по адресу
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.
Спасибо, ждём вас на N-N-N.ru
Сегодня абсорбционные чиллеры и другие системы двухфазного охлаждения используются и в науке, и в повседневной жизни: в ядерных реакторах, теплоэнергетике, высокопроизводительных устройствах микроэлектроники и серверах, в опреснительных системах. Поддержание стабильной рабочей температуры – одна из важных задач в эксплуатации систем охлаждения и оборудования, для которого они предназначены.
Ученые Новосибирского государственного университета и Института теплофизики им. С.С. Кутателадзе СО РАН вместе со студентами механико-математического факультета предложили новый способ повышения эффективности теплообмена при кипении в вакууме, который позволит разработать более эффективные и надежные системы двухфазного охлаждения. Результаты экспериментов опубликованы в журнале Applied Thermal Engineering (Q1).
К таким системам двухфазного охлаждения можно отнести системы погружного типа (immersion cooling), которые позволяют поддерживать необходимые температурные условия за счет отвода излишнего тепла от тепловыделяющей поверхности посредством кипения жидкости. В данном случае кипение за счет постоянного процесса парообразования обеспечивает гораздо более высокую интенсивность теплообмена и стабильность температурного режима по сравнению с традиционным воздушным охлаждением. Однако не редки случаи, когда то или иное устройство нужно охладить еще больше: например, для уменьшения скорости коррозии теплообменного оборудования в различных типах испарителей, повышения эффективности и экологичности когенерационных электростанций, снижения энергопотребления в испарителях опреснительных установок. Тогда необходимо понижать давление, тем самым снижая температуру кипения жидкости.
Однако одним из основных факторов, препятствующих внедрению технологий, основанных на кипении теплоносителя в вакууме, является заметное снижение интенсивности теплообмена и критических тепловых нагрузок с понижением давления. Например, при понижении давления от атмосферного до давления, при котором вода начинает кипеть при температуре близкой к комнатной, интенсивность теплообмена при кипении может снижаться в несколько раз. Более того, процесс кипения в вакууме сопровождается существенными колебаниями температуры теплообменной поверхности. Для ряда задач, например, охлаждения устройств микроэлектроники погружным способом, это является крайне нежелательным фактором, влияющим на надежность работы оборудования, — рассказал кандидат физико-математических наук, старший научный сотрудник ИТ СО РАН и Лаборатории физико-технических основ энергетики физического факультета НГУ Антон Суртаев.
По этой причине сегодня активно разрабатываются и обсуждаются различные способы повышения эффективности теплообмена при кипении в вакууме. Большинство из них основано на модификации поверхности тепловыделения. Среди них существует два главных направления: изменение морфологии рабочей поверхности путем микро- и наноструктурирования и управление ее свойствами смачивания. Исследование новосибирских ученых принадлежит второму направлению.
Так, ими разработана и создана так называемая бифильная поверхность, соединяющая в себе преимущества гидрофобных и гидрофильных свойств поверхности применительно к задаче повышения эффективности кипения. Эксперименты проведены с использованием современных высокоскоростных методик: термографической съемки и видеосъемки. В результате авторы показали, что изготовленная поверхность обеспечивает значительную интенсификацию теплообмена при кипении в вакууме (до 3,7 раза по сравнению с обычной поверхностью) и позволяет значительно стабилизировать температурный режим охлаждения.
Иными словами, применение бифильной поверхности позволило нам «разбить один большой пузырь на несколько пузырьков поменьше» и тем самым обеспечить однородность температурного поля поверхности при кипении в вакууме, — рассказал студент 3 курса Инженерной школы ММФ НГУ Георгий Патрин.
- Источник(и):
- Войдите на сайт для отправки комментариев