Силы света: как путешествовать через вещество?
Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.
Какое-то время продолжим трудится на общее благо по адресу
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.
Спасибо, ждём вас на N-N-N.ru
Почему стекло прозрачное, а металл и кирпич — нет? Почему зеркало отражает? Почему сквозь матовое стекло проникает свет, но ничего не видно? Разберемся в непростом вопросе: как вещество действует на падающий на него свет. Простой, казалось бы, вопрос: как свет проходит через оконное стекло и почему он не проходит через стену? Чтобы понять это, нам придется углубиться в строение вещества и самого света.
Свет — это волны
О свете можно говорить на двух языках: как о потоке частиц света (фотонов) и как об электромагнитных волнах. Первый язык более точен, чем второй, но гораздо более сложен. Фотон в веществе — отнюдь не шарик или мячик. Законы его поведения сложны, не до конца еще изучены и плохо поддаются изложению на обыденном языке. Поэтому оставим в покое дебри квантовой оптики и поговорим о свете как о волнах.
Вспомним, что вещество состоит из атомов. У каждого атома есть положительно заряженное ядро и кружащие вокруг него отрицательно заряженные электроны. Отрицательные заряды притягиваются к положительным, поэтому ядро притягивает электроны, не давая им разлететься.
Как заряженные частицы могут притягиваться или отталкиваться на расстоянии, не касаясь друг друга? Дело в том, что они окружены электрическим полем. Электроны погружены в поле ядра, и это поле притягивает их к ядру. Образно говоря, электрические поля — это длинные руки, которые заряды протягивают друг другу, чтобы взаимодействовать.
Электрическое поле есть не только у заряженных частиц, но и у света. Дело в том, что свет — электромагнитная волна. Другими словами, он состоит из колеблющегося электрического и магнитного поля. Магнитного поля света мы здесь касаться не будем, а вот об электрическом поговорим подробнее.
Электромагнитные волны во многом похожи на волны в воде от брошенного камня. Бросим камень в воду и зафиксируем взгляд на какой-нибудь торчащей из воды былинке. Ее поочередно будут накрывать гребни и впадины. Точно так же атом, попавший под световую волну, будут накрывать «гребни», где электрическое поле очень сильное, и «впадины», где оно такое же сильное, но противоположно направленное. Правда, в случае света гребни и впадины будут сменять друг друга очень часто: сотни триллионов раз в секунду!
Что при этом произойдет с атомом? Вспомним, что электрическое поле действует на заряженные частицы, притягивая их или отталкивая. Эта сила со стороны света будет действовать и на ядро, и на электроны. Но ядра тяжелее электронов в тысячи, а то и сотни тысяч раз, их так просто с места не сдвинешь. А вот электроны начнут колебаться в такт волне.
Однако притяжение между электроном и ядром никуда не денется. Волна будет утаскивать электрон с его законного места, а ядро притягивать его обратно. В результате электрон будет колебаться, но не как поплавок на поверхности озера, который всецело во власти волны. Скорее, он будет похож на подвешенный на пружине грузик, за который ритмично тянут вверх-вниз. Здесь пружина — это притяжение к ядру, а тянущая рука — раскачивающая электрон световая волна.
Дальше начинается самое интересное. Колеблющийся электрон сам станет источником света! Таков уж закон природы, что колеблющаяся заряженная частица испускает электромагнитные волны. Физики называют эти волны вторичными, чтобы отличить их от первичной волны, которая накрыла атом и заставила электрон колебаться.
Конечно, под светом одного атома книжку не почитаешь. Но атомов много, очень много. В стекле вашего окна их больше, чем стаканов воды в Мировом океане. И во всех атомах, попавших под световую волну, электроны колеблются и излучают вторичные волны.
Коллективная прямота
Эти вторичные волны накладываются друг на друга. Это не всегда значит, что они становятся сильнее. Если гребень второй волны накладывается точно на гребень первой (говорят, что эти волны в фазе друг с другом), то они усиливают друг друга. Если же гребень второй волны попадает точно на впадину первой (эти волны в противофазе), то они сглаживают, ослабляют друг друга. Две строго одинаковые волны в противофазе компенсируют друг друга полностью, как будто никаких волн нет вообще. Нам еще придется вспомнить об этом ниже!
Получается сложная картина. Каждый отдельный атом излучает вторичные волны во всех направлениях. Но волны от разных атомов накладываются друг на друга, где-то в фазе, где-то в противофазе, а где-то «серединка на половинку». В результате где-то волны вообще компенсируют друг друга и исчезают, а где-то усиливаются.
У физиков есть способ рассчитать, что получается, когда друг на друга накладываются вторичные волны от всех бесчисленных атомов. Правда, он требует высшей математики, так что здесь вам придется поверить ученым на слово, даже если результат покажется очень странным.
- Источник(и):
- Войдите на сайт для отправки комментариев