Ученые ИТМО создали систему кубитов для защиты квантовых вычислений

Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.

Какое-то время продолжим трудится на общее благо по адресу https://n-n-n.ru.
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.

Спасибо, ждём вас на N-N-N.ru

Физики ИТМО рассмотрели движение пары фотонов в двумерном массиве сверхпроводящих кубитов и доказали, что использование топологических состояний позволяет защитить результаты простейших квантовых вычислений от некоторых типов беспорядка. Это открывает большие возможности для развития сверхпроводящих квантовых процессоров.

В последние годы такие технологические гиганты, как Google и Intel, уделяют большое внимание сверхпроводящим процессорам нового поколения, прообразам будущих квантовых компьютеров. “Сердце” таких устройств — кубит — двухуровневая квантовая система. В отличие от классических триггеров, которые имеют всего два состояния — включен (1) и выключен (0), — квантовый бит может находиться в произвольной суперпозиции этих двух положений.

Современные сверхпроводящие процессоры насчитывают всего около 60 кубитов, а дальнейшему развитию технологии мешает разброс параметров квантовых битов, который неизбежно появляется при их изготовлении. Кроме того, взаимодействие с окружающей средой и тепловые шумы разрушают суперпозиционные состояния кубитов, из-за этого могут возникать проблемы с обработкой и хранением информации.

Ученые из фронтирной лаборатории “Исследование фундаментальной физики с помощью топологических метаматериалов” Нового физтеха ИТМО предложили подход, с помощью которого можно преодолеть это фундаментальное препятствие. Они разработали систему, которая поддерживает топологически защищенные состояния пар фотонов, что обеспечивает устойчивость простейших алгоритмов квантовых вычислений к беспорядку в связях между кубитами.

Топологические состояния — это особый тип состояний, защищенных глобальными симметриями системы, а потому нечувствительных к локальным возмущениям. Такие состояния оказываются устойчивыми к беспорядку: даже если изменить структуру в нескольких местах, частота таких мод или их направление распространения не изменятся. Основываясь на этом любопытном свойстве, ученые по всему миру разрабатывают топологически защищенные волноводы, резонаторы и лазеры, функционал которых не зависит от дефектов структуры. Однако возможность защитить квантовую запутанность или квантовые вычисления с помощью похожих подходов оставалась практически неисследованной.

“Мы спроектировали двумерный массив кубитов и исследовали, как в нем движутся пары фотонов. Нюанс в том, что эти частицы “не знают” ничего друг о друге, пока в систему не введено какое-либо эффективное взаимодействие между ними, — рассказывает Андрей Степаненко, автор исследования, аспирант Нового физтеха Университета ИТМО. — Чтобы эффективное взаимодействие фотонов было сильным, мы использовали переход Джозефсона — диэлектрик, расположенный между двумя сверхпроводниками; многие сверхпроводящие кубиты построены именно на этом элементе. Это позволило нам создать топологическую фазу, заставить фотоны взаимодействовать и сформировать связанное состояние”.

За счет взаимодействия частиц система приобретает особенный топологический порядок. Поскольку структура двумерная, то на ее границе появляются уже два типа состояний — краевое и угловое. Ученые проверили, как беспорядок в системе может влиять на краевые состояния. Для этого они промоделировали реальную структуру, в которой кубиты немного различаются.

“Наблюдая за изменениями спектра системы, мы убедились, что если краевое состояние топологическое, то оно будет защищено от флуктуаций в связях между кубитами, — рассказывает Марк Любаров, автор исследования, выпускник Нового физтеха Университета ИТМО. – Это, уже само по себе интересное свойство, мы впервые продемонстрировали в двумерной системе, в которой можно реализовать квантовый транспорт“.

В последние годы коллектив фронтирной лаборатории на Новом физтехе активно развивает направление, связанное с топологией, и видит в нем большой потенциал. Авторы планируют продолжать исследование.

“Но еще более интересные свойства возникают в контексте квантовых вычислений. Уже сегодня в нескольких алгоритмах квантовые компьютеры превосходят классические. Один из таких алгоритмов — бозонный сэмплинг (англ. boson sampling). Суть его заключается в том, что сперва в систему запускают фотоны и затем наблюдают, как они распределятся спустя некоторое время. Наша работа демонстрирует, что в топологических массивах кубитов результат такого алгоритма тоже защищен от беспорядка”, — добавляет Андрей Степаненко.

Исследование поддержано программой развития Университета ИТМО ― 2030 и грантом РНФ.

Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 5 (2 votes)
Источник(и):

Научная Россия