В протоне нашли внутреннее очарование

Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.

Какое-то время продолжим трудится на общее благо по адресу https://n-n-n.ru.
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.

Спасибо, ждём вас на N-N-N.ru

Коллаборация европейских теоретиков NNPDF сообщила о результатах поиска внутреннего очарования протона с помощью большого массива экспериментальных данных. Согласно их результатам очарованные кварки могут постоянно переносить до одного процента импульса протона с достоверностью в три стандартных отклонения.

Исследование опубликовано в Nature.

Эксперименты 60-х и 70-х годов прошлого века по глубокому неупругому рассеянию, проведенные в Стэнфордском центре линейных ускорителей, стали надежным свидетельством того, что протон состоит из точечных составляющих, названных кварками. Кварки, в свою очередь, связаны друг с другом глюонами — переносчиками сильного взаимодействия. Первоначально влияние глюонов было физиками недооценено. Сейчас же они знают, что глюоны формируют треть массы и половину спина протона. Партонную модель протона (партонами называют составные части адронов) венчает концепция кваркового моря — множества постоянно рождающихся кварк-антикварковых пар. Виртуальный характер этого процесса позволяет говорить о том, что внутри протона могут рождаться самые разные кварки, причем их распределение может быть свидетельством довольно любопытных физических эффектов.

Для виртуальных процессов характерно нарушение закона сохранения энергии на время, диктуемое неопределенностью Гейзенберга. Например, это квантовое свойство разрешает рождаться парам кварк-антикварк, чья масса превышает саму массу протона. Всего таких тяжелых кварка три из шести: очарованный, топ-кварк (истинный) и боттом-кварк (прелестный). Первый из троицы — наиболее легкий, его масса, равная 1275 мегаэлектронвольт, лишь немного превышает массу протона — 938 мегаэлектронвольт. Если же некоторый процесс не нарушает закона сохранения (физики в этом случае говорят, что он «на массовой поверхности»), то его вполне можно включить в состояние системы (протона), модифицировав ее волновую функцию, согласно правилам обычной квантовой механики, что и было сделано для трех легчайших кварков и их античастиц.

Разговоры о том, что близость массы очарованного кварка к массе протона должна давать существенную поправку к его волновой функции, начались еще на заре зарождения квантовой хромодинамики — теории взаимодействия кварков и глюонов. Экспериментальные попытки ответить на этот вопрос оказались противоречивы: пока одни физики утверждали, что очарованные кварки не могут переносить и половины процента импульса протона, другие — доводили это значение до двух. Проблема усугубляется тем, что при анализе экспериментальных данных важно отделять внутренний очарованный аромат от такового, рождающегося в процессах с большой передачей импульса, которые случаются в эксперименте.

Попытаться внести ясность в эту сорокалетнюю проблему решила группа теоретиков из Англии, Италии и Нидерландов, объединившаяся в коллаборацию NNPDF под руководством Стефано Форте (Stefano Forte) из Миланского университета.

Подробнее
Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 5 (1 vote)
Источник(и):

N+1