Microsoft только что сделала огромную ставку на термоядерный синтез

Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.

Какое-то время продолжим трудится на общее благо по адресу https://n-n-n.ru.
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.

Спасибо, ждём вас на N-N-N.ru

Блог компании getmatch. Ученые десятилетиями мечтали о ядерном синтезе, который даст неограниченную энергию и не будет угрожать радиацией. Microsoft считает, что технология почти готова. И теперь ставит на это миллиарды. Предыдущая большая ставка компании — на OpenAI и её ИИ-системы — оправдалась с лихвой. За полгода с момента релиза ChatGPT капитализация компании выросла на 670 миллиардов долларов. Таким интересом со стороны инвесторов и близко не могут похвастаться Google, Apple и Amazon. Посмотрим, сможет ли Сатья Наделла провернуть всё это второй раз, только возможно в ещё большем масштабе.

Почему это очень сложно (и очень круто)

Чистая энергия всем, кто этого захочет, почти без постоянных затрат — звучит как фантастика. С момента выдвижения теории о возможности такой реакции в 1951 году (в рамках секретного проекта «Маттерхорн» минобороны США), многие десятилетия особых продвижек в этом направлении не наблюдалось. Хотя над проблемой активно работал Курчатов, и после его смерти в Курчатовском институте всё-таки смогли на короткое время создать термоядерную плазму.

termoyad1.pngТак это представляют в фильмах

Следующей значимой датой стало 30 октября 1997 года, когда в объединённом европейском токамаке-реакторе JET в Великобритании удалось достичь мощности ядерного энерговыделения на уровне 16 МВт, что примерно равнялось мощности плазменных потерь. То есть, этот реактор работал в «ноль». Это получило название режима «перевала» — равенства тепловых потерь горячей зоны реактора и энергетического выхода реакции термоядерного синтеза. Но даже такой результат длился примерно секунду.

Позже более крупные токамаки смогли поддерживать режим «перевала» уже длительностью в десятки секунд. Но в целом их тепловые потери всё еще сильно превышали общее энерговыделение. То есть как реакторы они, мягко говоря, не годятся.

В 2010-е годы российские исследователи из Института ядерной физики СО РАН на установке ГДЛ (ГазоДинамическая Ловушка) сумели во много раз увеличить температуру нагрева плазмы. И в 2016 году довели её до рекордных 10 миллионов градусов по Цельсию. Время удержания плазмы составило несколько миллисекунд, но даже такой результат можно считать прорывом. Он позволяет всерьез задуматься над проектом термоядерного реактора на основе таких технологий. Ожидается, что он может быть реализован в течение ближайших 20–30 лет

Большие надежды теперь возлагаются на Международный термоядерный экспериментальный реактор (ITER). Окончание его постройки запланировано на конец 2025 года. На этом реакторе планируется провести исследования поведения высокотемпературной плазмы и разных материалов, которые могли бы использоваться для промышленного реактора.

Ну а самый ощутимый результат пока что показала модель инерциального термоядерного синтеза, запускаемого с помощью лазеров. В декабре 2022 года в США в комплексе NIF («Национальный комплекс лазерных термоядерных реакций») ученые впервые в истории добились положительного выхода энергии в процессе термоядерного синтеза. Им удалось получить около 3,15 мегаджоуля энергии, что в полтора раза превысило направленную лазерами в мишень энергию (2,05 мегаджоуля).

Конечно, как для какой-нибудь электростанции это очень скромные цифры, но в качестве доказательства работы концепта — это уже очень многое. Термоядерный синтез впервые принёс какой-то плюсовой результат. Это был триумф, которого ждали больше пятидесяти лет.

termoyad2.pngУже ближе к реальности, но всё еще не то

В то же время речь там шла всего лишь о превышении выделившейся энергии над энергией, непосредственно переданной в мишень. Общее количество энергии, затраченной на питание 192 лазеров установки, составляло 322 МДж. То есть КПД «генератора энергии» в этом эксперименте составляло менее 1%. Если попытаться запитать страну такими реакторами, нужно будет срочно построить в 100 раз больше обычных электростанций.

То есть, по всем параметрам и на какую технологию ни смотри, до полноценного термоядерного реактора, способного питать города, нам нужны ещё многие десятилетия.

И тут вдруг — Microsoft. Компания, которая известна своими операционными системами. На днях заключает контракт о создании в скором времени полноценной работающей большой термоядерной станции. Откуда это внезапно? Конечно, технология в последние годы развивалась, но… Уже?!

Окна в новый мир

Microsoft только что подписала большое соглашение о покупке электроэнергии от термоядерного генератора. Её обязуется предоставить компания под названием Helion Energy. Согласно соглашению, она должна подключить первый в мире коммерческий термоядерный генератор к электросети в 2028 году, и с его помощью запитывать дата-центры Microsoft в Вашингтоне.

termoyad3.pngА вот это уже оно. Прототип установки Helion Energy 7-го поколения, Polaris

Генерировать планируется не менее 50 мегаватт электроэнергии. По сравнению с АЭС это, конечно, очень немного в среднем те производят порядка 3200 мегаватт. Но в то же время это в два раза больше, чем у средней гидроэлектростанции. И ощутимо больше, чем 42 МВт, которые сегодня генерируют первые две тестовые ветряные электростанции, расположенные в открытом море у берегов США.

В общем, для пилотного проекта это довольно значимая мощность. Её достаточно чтобы обеспечивать потребности 60 000 человек. К тому же, такой термоядерный генератор, если он будет рабочим, — это практически Святой Грааль. Неограниченное электричество, не зависящее ни от погоды, ни от локации, ни от редкого топлива, и при этом не рискующее чем-то серьезно загрязнить планету. Вещь настолько желанная, что есть с полсотни голливудских фантастических фильмов, где подобная технология являлась главной движущей силой злодея или героя. Чего стоят хотя бы «Человек-паук 2» с его Доктором Осьминогом или «Железный человек» с неограниченным источником энергии — миниатюрным термоядерным (дуговым) реактором — в его груди.

termoyad4.pngВнешне это выглядит не так уж впечатляюще

Сказать, что воплотить такую научную фантастику в жизнь — сложнейшая задача, было бы ничего не сказать. Раньше оптимистичные оценки экспертов в отношении того, когда мир сможет увидеть свою первую термоядерную электростанцию, хотя бы и совсем маломощную, сходились на периоде от 2040 до 2050 года. Пессимисты же говорили, что в больших масштабах технология может быть слишком сложной, и нет никаких гарантий, что в реальности всё получится.

Успех Helion Energy сейчас зависит от достижения ряда технологических прорывов за очень короткий промежуток времени. А потом ещё нужно будет вывести эту технологию на коммерческий уровень. Они делают ставку на технологию ускорителя плазмы. Который будет повышать температуру термоядерного топлива (в их случае состоящего из дейтерия и гелия-3) до 100 миллионов градусов Цельсия. Такие температуры могут расплавить любой металл, но на месте это топливо удерживают мощные магниты. По мере расширения плазмы, она резко отталкивает магнитное поле. По закону Фарадея, изменение поля вырабатывает ток. Который установка напрямую собирает за счет «высокоэффективного импульсного подхода».

У компании есть видео на Ютубе, которое иллюстрирует процесс подробнее:

Чтобы всё это проверить в значимых масштабах, они сейчас ускоренно строят седьмую итерацию своего генератора.

Подробнее
Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 5 (1 vote)
Источник(и):

Хабр