Найдена золотая середина между графеном и классическими полупроводниками
Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.
Какое-то время продолжим трудится на общее благо по адресу
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.
Спасибо, ждём вас на N-N-N.ru
Ученые МФТИ создали детектор терагерцового излучения на основе двухслойного графена, обладающий рекордной чувствительностью при криогенных температурах. Представленное устройство уже конкурентоспособно по сравнению с коммерческими болометрами на полупроводниках и сверхпроводниках. Ключом к успеху явилось использование двухслойного графена с небольшой шириной запрещенной зоны — этот материал оказался «золотой серединой» между однослойным графеном и классическими объемными полупроводниками.
Работа опубликована в журнале ACS Nano. Группа ученых из Центра фотоники и двумерных материалов МФТИ под руководством Дмитрия Свинцова разработала субтерагерцовый фотодетектор с рекордной чувствительностью при криогенных температурах. Работа показала, что открытие запрещенной зоны в двухслойном графене на порядок улучшает способность материала к «превращению» излучения в постоянный электрический ток.
Возможно, данное исследование позволит установить универсальные требования к материалам для эффективного детектирования в терагерцовом диапазоне, так как это открытие можно применить не только к двухслойному графену, но и к другим двумерным материалам. Фундаментальные пределы чувствительности подобных материалов еще предстоит выяснить, но уже сейчас можно сделать вывод об эффективности материалов со средней запрещенной зоной (около 0,1–0,2 эВ) по сравнению с бесщелевым однослойным графеном, а также классическими полупроводниками с большой запрещенной зоной (порядка 1 эВ).
Терагерцовое излучение — это невидимое для глаз электромагнитное излучение с частотой примерно от 0,1 до трех ТГц (1ТГц = 1012 Гц), что соответствует длинам волн от трех миллиметров до 100 мкм. Располагаясь между миллиметровым и микроволновым диапазонами, ТГц-излучение является своеобразной разграничительной чертой между двумя подходами к взаимодействию с излучением: электроникой (радиодиапазон — бо́льшая длина волны, меньшая частота, меньшая энергия) и фотоникой (инфракрасный и видимый диапазон, меньшая длина волны, бо́льшая частота, бо́льшая энергия излучения), которые при приближении к терагерцовому диапазону теряют свою эффективность.
Терагерцовый диапазон может быть использован для беспроводных широкополосных высокоскоростных систем связи, для медицинской визуализации, для безопасности, в спектроскопии, в астрофизических исследованиях, в измерительной технике и во многом другом. Ожидается, что следующая технологическая революция будет тесно связана с разработками в области терагерцовых технологий. Неудивительно, что в этой области исследований работает большое количество научных групп.
Расположение терагерцового диапазона на шкале электромагнитного излучения / ©Пресс-служба МФТИ
Графен давно вступил в «гонку за терагерцы» в качестве активного элемента для терагерцового детектирования и показывает хорошие результаты. Двухслойный графен, в отличие от бесщелевого однослойного, обладает уникальным свойством переменной запрещенной зоны в зависимости от величины поперечного электрического поля. При отсутствии внешнего поля двухслойный графен является бесщелевым полуметаллом (как и однослойный при любых полях), однако приложение поперечных электрических полей с двух затворов — сверху и снизу относительно листа графена — позволяет открывать запрещенную зону и менять концентрацию носителей в энергетических зонах, переводя графен в полупроводниковое состояние.
Группа ученых из МФТИ изначально ставила перед собой целью изучение туннельного терагерцового фотоотклика в двухслойном графене с открытой запрещенной зоной. Для этого коллектив лаборатории спроектировал и изготовил транзисторные устройства на основе двухслойного графена с несколькими затворами.
Авторы работы задумывали открыть запрещенную зону в двухслойном графене, индуцировать p-n переход в графеновом канале и исследовать туннельный фотоотклик. Туннельный транспорт действительно наблюдался в такой структуре, что стало видно из анализа сопротивления и фотосопротивления графеновых транзисторов, — эти результаты представлены в предыдущей статье научного коллектива лаборатории. Однако, изучая фотоотклик в таких графеновых транзисторах, ученые наткнулись на другой необычный эффект, намного более важный для практических задач по проектированию терагерцовых фотодетекторов, — улучшение всех характеристик фотодетектора в несколько раз с открытием запрещенной зоны в графене.
В литературе показаны примеры открытия запрещенной зоны в двухслойном графене вплоть до 200 мэВ. Авторы работы открыли запрещенную зону на порядок меньше, около 20 мэВ, и получили увеличение фоточувствительности минимум в три раза по сравнению с бесщелевым состоянием графена. Следует ожидать, что при еще бо́льшем открытии запрещенной зоны характеристики фотодетектора улучшатся минимум на порядок, хотя представленные в данной работе характеристики уже бьют сегодняшние рекорды по чувствительности и шумовым характеристикам субтерагерцовых криогенных детекторов: вольтаическая фоточувствительность RV = 50 кВ/Ватт, токовая фоточувствительность RI = 20 А/Ватт, эквивалентная мощность шума NEP = 40 фВ/Гц(1/2). Следует отметить, что представленные учеными фотодетекторы абсолютно конкурентоспособны по сравнению с коммерческими болометрами на полупроводниках и сверхпроводниках.
Удивительно, но с открытием запрещенной зоны увеличивается не только чувствительность детектора по фотонапряжению. Повышается также и токовая чувствительность, что свидетельствует об улучшении внутренних выпрямляющих свойств материала с открытием запрещенной зоны. Кроме того, с открытием запрещенной зоны также уменьшаются шумы фотодетектора.
Слева — принципиальная электрическая схема субтерагерцового детектора на основе двухслойного графена. Большие контакты стока и истока (по краям) соединены с антенной, улавливающей излучение. Малые контакты затворов (по центру) создают своим полем p-n переход в канале транзистора. Фотонапряжение, образующееся при освещении прибора суб-ТГц-излучением, измеряется между крайними контактами. По центру — микрофотография готового устройства. Справа — зависимость потенциальной энергии электрона в канале фотодетектора от координаты (так называемая зонная диаграмма p-n перехода) / ©ACS Nano
«Нам кажется, что мы откопали ключ к эффективному терагерцовому фотодетектированию, так как вывод о влиянии запрещенной зоны на характеристики фотодетектора можно обобщить и на другие материалы. Слишком большая запрещенная зона осложняет способность собирать фотосигнал в электрической цепи, так как неизбежно выливается в большое контактное сопротивление. При слишком маленькой запрещенной зоне или ее отсутствии материал не так эффективно детектирует ввиду недостаточно сильной нелинейности в приборе. Как на горке с маленьким перепадом высот, предмет будет катиться очень медленно, а на слишком крутой — выходить из-под контроля. Получается, что наиболее эффективно искать золотую середину и использовать материалы с умеренной запрещенной зоной», — говорит Дмитрий Свинцов, заведующий лабораторией оптоэлектроники двумерных материалов МФТИ.
Несмотря на все сложности, работа по «укрощению» ТГц-излучения, несомненно, стоит всех приложенных усилий, учитывая огромную востребованность по применению терагерцев. Поэтому неудивительно, что в последние десятилетия тема терагерцев стала особо актуальной в научном сообществе. Работа выполнена при поддержке Российского научного фонда и Министерства науки и высшего образования России.
- Войдите на сайт для отправки комментариев