Наручные атомные часы стали ближе. Определение координат без GPS

Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.

Какое-то время продолжим трудится на общее благо по адресу https://n-n-n.ru.
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.

Спасибо, ждём вас на N-N-N.ru

Блог компании RUVDS.com. Автор: Анатолий Ализар. В своё время атомные часы сделали возможным создание спутниковых систем навигации вроде GPS, которые опираются на сверхточные синхронизированные часы. Но сейчас перед человечеством стоит скорее обратная задача: мы хотим обеспечить точную навигацию по местности без GPS, и для этого нужны ещё более точные атомные часы, чем для работы GPS.

Зная скорость и направление движения любого объекта, часы нового поколения обеспечат позиционирование с точностью до метра/сантиметра (в зависимости от их точности, а также точности других датчиков). В общем, главная задача теперь — решить проблему зависимости от спутниковой навигации, которая не всегда доступна.

Как работают атомные часы

Первые атомные часы были созданы в 1949 году в Национальном бюро стандартов США, ныне Национальном институте стандартов и технологий (NIST). Это был абсолютно новый принцип измерения времени. Анахроничные механизмы прошлого измеряли астрономические явления, вращение Земли, использовали механические пружинки, шестерёнки и маятники. В отличие от них, атомные часы измеряют время по электромагнитным сигналам, излучаемым электронами вокруг атома. Когда электрон меняет энергетический уровень, он поглощает или излучает свет с частотой, одинаковой для всех атомов данного элемента.

Например, при переходе между двумя сверхтонкими уровнями цезия-133 возникает ровно 9 192 631 770 периодов электромагнитного излучения (колебаний частоты). Именно такое значение сейчас принято в системе СИ как определение «секунды».

Оптические атомные часы определяют время с помощью лазера, который настраивается на эту частоту и регистрирует колебания частоты при энергетических переходах. Это делает их невероятно точными по сравнению с предшественниками. Сейчас оптические часы — это перспективная и активная область исследований. Любопытно, что их изобретателем считается известный советский физик Владлен Летохов, который предложил идею в 1960-е.

Точность часов во многом обусловлена качеством лазера. Именно поэтому большие, громоздкие научные установки обеспечивают гораздо лучшую точность, чем портативные часы с коммерчески доступными лазерами массового производства.

Атомные часы также чрезвычайно полезны в космосе. Примером такого эксперимента являются атомные часы NASA Deep Space Atomic Clock, которые в 2019−2021 годах тестировали технологию на орбите. В будущем эти устройства могут найти применение в поиске тёмной материи, определении гравитационных аномалий, навигации и т. д.

chasy1.pngDeep Space Atomic Clock, художественный рендер, источник: НАСА

Поскольку время является неотъемлемым свойством пространства, то максимально точные и надёжные атомные часы — это практически обязательный инструмент в космосе. Только он может обеспечить независимую автономную навигацию в дальнем космосе.

chasy2.pngУстановка атомных часов Deep Space Atomic Clock на спутник, НАСА

Очевидно, что изучение дальнего космоса человечеством возможно только с помощью автономных роботизированных систем. Нет смысла посылать людей в миссию продолжительностью тысячи или миллионы лет, потому что это на порядок осложняет конструкцию корабля.

Из этого следует, что контакты с кораблями инопланетных цивилизаций с большой вероятностью начнутся с контактов с роботизированными зондами-разведчиками.

Новый конкурс на самые маленькие атомные часы

В прошлом году DARPA объявила конкурс на создание более точных атомных часов меньшего размера, и в него тут же включились коллективы физиков и инженеров из разных университетов и научных лабораторий.

Программа DARPA H6 предусматривает создание «сверхмалых, энергоэффективных, пригодных для эксплуатации часов, способных сохранять микросекундную точность в течение одной недели в рабочем диапазоне от −40 до +85 °C без GPS-синхронизации». На самом деле такая точность давно достижима в лабораторных машинах большого размера. Они не выходят из интервала 0,000001 с в течение десятков тысяч лет.

В прошлом году физики из Висконсинского университета в Мадисоне разработали сверхточные часы, которые теряют одну секунду каждые 300 млрд лет (в переводе на более стандартные величины). Это также первые в мире «мультиплексные» часы, совмещающие в себе шесть различных импульсных генераторов, что позволяет сравнивать их значения и замечать аномалии.

См. также новую научную статью этих авторов «Лабораторная проверка гравитационного красного смещения в миниатюрной сети часов» (12 августа 2023 г, Nature).

chasy3.pngГравитационное красное смещение в миниатюрной сети часов на оптической решётке, источник: Nature

По понятным причинам (качество лазера и др.) портативные устройства сильно уступают в точности лабораторному оборудованию, там таких показателей пока ни у кого нет.

В прежние века точный хронометр был важен для определения долготы в навигации, а сегодня серьёзной проблемой в PNT (позиционирование, навигация и синхронизация) является потеря сигнала GPS. Благодаря миниатюрным и экстремально точным атомным часам появляется возможность в некоторых PNT-приложениях отказаться от GPS на срок в несколько дней или недель.

Конкурс DARPA состоит из трёх этапов. На первом участники будут решать проблемы зависимости тактовой частоты от температуры и снижения SwaP (размер-вес-энергопотребление). На втором — проблемы надёжности часов, а также их работы в указанном диапазоне температур. На третьем участники продемонстрируют полностью интегрированные часы тактического класса, изготовят и поставят пять экземпляров таких часов.

Подробнее
Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 5 (2 votes)
Источник(и):

Хабр