Российские ученые улучшили метод химического моделирования Deep Mind

Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.

Какое-то время продолжим трудится на общее благо по адресу https://n-n-n.ru.
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.

Спасибо, ждём вас на N-N-N.ru

Улучшенная архитектура позволит точнее просчитывать поведение химических соединений при моделировании прототипов новых материалов. Ученые из Российского квантового центра совместно с коллегами из НИТУ МИСиС повысили производительность фермионной нейронной сети (FermiNet), созданной дочерней компанией Google, британским разработчиком систем искусственного интеллекта DeepMind. В ходе эксперимента, выполненного при поддержке РНФ и Исследовательского центра Nissan, специалисты применили нейросеть FermiNet и облачную платформу квантовых вычислений QBoard для моделирования химических систем большего размера.

Результаты описаны в научном журнале International Journal of Quantum Chemistry.

Исследователи в самых разных областях науки регулярно используют вычислительные архитектуры на основе искусственных нейронных сетей, чтобы анализировать огромные объемы данных и прогнозировать поведение отдельных систем. Так, в 2020 году DeepMind впервые применил фермионную нейросеть для решения одной из ключевых задач в области химии — уравнения Шредингера для электронов в молекулах.

Большинство задач в квантовой механике не могут быть решены с получением точного ответа, поэтому ученые вынуждены использовать аппроксимацию — научный метод, состоящий в поиске приблизительных значений за счет замены объектов упрощенными аналогами. Варьируя свободные параметры, физикам удается находить волновые функции, наиболее точно описывающие состояние системы. Эта форма поиска — анзац — активно применяется в квантовой химии, поскольку моделирование элементарных химических реакций все еще дается ученым с большим трудом даже для малого числа атомов в системе.

В рамках эксперимента совместная команда из физиков, химиков и специалистов в области машинного обучения использовала в качестве анзаца архитектуру FermiNet. Далее эксперты приступили к итеративному улучшению нейросети за счет обновленной процедуры ее обучения. В ходе расчетов использовались инструменты облачной платформы квантовых вычислений QBoard. Ученые не только получили возможность симулировать системы большей размерности, чем позволяла оригинальная архитектура FermiNet, но и повысили точность классических вычислений в электрон-ядерном и электрон-электронном взаимодействии.

Результаты были продемонстрированы в процессе моделирования азота, угарного газа, этилена, фтороводорода и ряда других молекул. В перспективе полученные данные могут использоваться в фармакологии для создания новых лекарств, материаловедении и топливной промышленности.

«Комбинация методов машинного обучения и квантовой химии дает сегодня очень интересные результаты. Подобные междисциплинарные взаимодействия физиков, химиков, биологов, программистов приводят к обогащению классических подходов и таким интересным гибридным решениям как наш кейс по использованию QBoard для развития сети FermiNet», — подчеркнул Алексей Федоров, руководитель научной группы «Квантовые информационные технологии» Российского квантового центра.

Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 5 (1 vote)
Источник(и):

ХайТек