Ученые научились оценивать прочность критически важных конструкций
Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.
Какое-то время продолжим трудится на общее благо по адресу
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.
Спасибо, ждём вас на N-N-N.ru
В НИЯУ МИФИ изучили предельные состояния конструкционных материалов при деформациях с помощью методов термомеханики. По мнению ученых, результаты исследований помогут оценивать прочность и ресурс элементов конструкций ядерных реакторов, ракетных двигателей, сверхзвуковых самолетов и других сложных технических систем.
Статья опубликована в высокорейтинговом журнале Continuum Mechanics and Thermodynamics.
Сегодня ученые из разных стран изучают механику деформируемого твердого тела. Действующая на тело внешняя нагрузка стремится исказить (деформировать) тело, совершая при этом работу над ним. Материал тела сопротивляется этому посредством внутренних сил, возникающих между элементарными объемами тела. Происходит изменение внутренней энергии тела, выделяется тепловая энергия и температура тела повышается.
Все эти процессы должны быть изучены и известны инженерам, поскольку накопление деформаций ведет к появлению больших перемещений, способных вызвать нарушение работы конструкции, отметил профессор кафедры физики прочности НИЯУ МИФИ Евгений Морозов.
«Трещины в материале могут образоваться на стадии изготовления детали (при прокатке, механической обработке и так далее) и остаться не замеченными на контроле. Они могут возникнуть и в процессе эксплуатации, в областях концентрации напряжений или в результате накопления повреждений металла при использовании в неблагоприятных условиях или при вибрирующей нагрузке. Проблема для инженера состоит в том, что при постоянной или переменной нагрузке трещина растет, и в ее вершине из-за повышенных скоростей деформации материал нагревается. Это отражается не в лучшую сторону на механических свойствах материала», — рассказал он.
Несмотря на то, что этот процесс происходит в малой окрестности у вершины трещины, кончик трещины упирается в испорченный материал, который пластически деформируется, становится мягким, и трещина удлиняется, а это негативно отражается на прочности детали.
«До сих пор исследователи не принимали это во внимание. А нагрев может очень значительным. Например, при усталостных испытаниях гладкого металлического образца, он от нагрева светится и раскаляется настолько, что в темноте от него можно читать газету», — пояснил Евгений Морозов.
Чтобы найти решение этой проблемы, ученые НИЯУ МИФИ изучили связь процессов деформирования и разрушения и кинетические эффекты саморазогрева материала за счет развития деформаций. Они разработали определяющие уравнения для конструкционных материалов под нагрузкой и установили связь между процессами деформирования и саморазогрева материала за счет внутреннего тепловыделения.
Ученые провели эксперименты с измерением температуры образцов из двух различных конструкционных сталей с различными механическими свойствами (жаропрочной и радиационно-стойкой низколегированной хромомолибденованадиевой стали и аустенитной нержавеющей хромникельтитановой стали) при различных уровнях деформации. Прецизионные измерения температуры проводились при статических и циклических испытаниях на гладких и надрезанных образцах в условиях высокого вакуума с использованием тепловизионных систем и высокочувствительных термопар.
По их мнению, результаты исследований помогут оценивать прочность и ресурс высоконагруженных элементов конструкций ядерных реакторов, ракетных двигателей, сверхзвуковых самолетов и других сложных технических систем.
- Источник(и):
- Войдите на сайт для отправки комментариев