Ученые выявили минерал, который поможет при создании материалов для суперкомпьютеров

Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.

Какое-то время продолжим трудится на общее благо по адресу https://n-n-n.ru.
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.

Спасибо, ждём вас на N-N-N.ru

Российские ученые впервые описали состав и структуру, а также сопоставили физические свойства трех минералов группы людвигита, которые имеют большое промышленное значение для добычи бора в месторождениях на Чукотке и в Якутии. Полученные данные также помогут при поиске и разработке новых материалов для суперкомпьютеров, которые могут изменять свои размеры и форму при намагничивании.

Результаты исследования, поддержанного грантом Президентской программы Российского научного фонда (РНФ), опубликованы в журнале Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials.

Людвигит — это представитель одноименной группы минералов, в составе которого доминируют такие элементы, как магний, железо и бор. В России месторождения боратных людвигитовых руд находятся в Якутии и на Чукотке и разрабатываются для получения борной кислоты и других соединений этого вещества. Борная кислота широко применяется в сельском хозяйстве в качестве удобрения и дезинфицирующего средства, в химической промышленности и других отраслях.

На сегодняшний день известно семь минералов группы людвигита. Ученые из Института химии силикатов имени И.В. Гребенщикова Российской академии наук (Санкт-Петербург) совместно с коллегами из Казанского федерального университета (Казань), Санкт-Петербургского государственного университета (Санкт-Петербург) и Московского государственного университета имени М В. Ломоносова (Москва) исследовали три из них: людвигит, азопроит и вонсенит. Химический состав этих минералов обогащен разными элементами: людвигита — магнием, азопроита — магнием и титаном, вонсенита — железом. Авторы определили кристаллическое строение каждого минерала с помощью рентгенографии и спектроскопии, в том числе в широком интервале температур. Оказалось, что кристаллическая структура всех трех минералов напоминает каркас, сложенный зигзагообразными цепочками из шестивершинников, состоящих из металла и кислорода, а в пустотах этого каркаса находятся борокислородные треугольники.

Исследователи впервые определили, что вонсенит обладает необычными магнитными свойствами, — магнитным упорядочением разной природы, локализованным в двух независимых подрешетках, — которые ослабевают при повышении температуры. Это позволит разработать на его основе синтетические материалы, размеры которых изменяются при намагничивании. Они необходимы для изготовления элементов памяти нового поколения для суперкомпьютеров. Поскольку в азопроите и людвигите содержание магния больше, чем железа, магнитные свойства в них не проявляются. Благодаря этому можно спрогнозировать, что у синтетически разработанных аналогов на основе азопроита и людвигита магнитных свойств не будет. Знание подобной зависимости упростит подбор химических составов для разработки новых материалов, необходимых для перспективных отраслей электроники.

Ученые также исследовали механизмы, по которым при высоких температурах у минералов изменяются свойства, и рассмотрели соединения, образующиеся в результате окисления входящего в их состав железа и последующего разложения. Такие процессы происходят с минералами в недрах Земли и в приповерхностных условиях, где на них воздействуют повышенные температуры и давление. Авторы выяснили, что из-за окисления железа в людвигите при нагревании до 330°С структура минерала становится нестабильной, претерпевает необратимые изменения, и, достигая определенного предела, минерал поэтапно разлагается на гематит, структурно близкий ему варвикит и магнетит. При дальнейшем повышении температуры до 1300°С происходит плавление остатков людвигита. Полученная информация может помочь отследить этапы минералообразования в горных породах, содержащих минералы группы людвигита, и связанных с ними месторождениях и залежах руды. Это будет полезно при добыче бора из людвигитовых руд и оптимизации связанных с ней высокотемпературных процессов.

«Результаты нашего исследования важны как для наук о Земле, так и для материаловедения, в частности, для кристаллохимического дизайна новых материалов, изменяющих свои размеры при намагничивании, а также с управляемыми свойствами, которые зависят от температуры. Помимо того, что новые данные о кристаллических структурах пополняют международные базы данных, знание о термическом поведении минералов, тесно связанном с особенностями химического состава и кристаллического строения, может оказаться полезным для понимания и моделирования этапов минералообразования, формирования месторождений и связанных с ними руд», — рассказывает руководитель проекта, поддержанного грантом РНФ, Ярослав Бирюков, старший научный сотрудник Института химии силикатов имени И.В. Гребенщикова.

Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 5 (1 vote)
Источник(и):

Научная Россия