В МТУСИ разработали нейросеть, способную распознавать автомобили
Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.
Какое-то время продолжим трудится на общее благо по адресу
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.
Спасибо, ждём вас на N-N-N.ru
Сотрудники факультета «Информационные технологии» МТУСИ под руководством декана факультета Михаила Городничева разработали уникальную нейронную сеть, созданную специально для решения задачи распознавания марок транспортных средств.
Человеческая жизнь в современную эпоху представляет собой обширный список практических задач, которые можно автоматизировать для повышения общей эффективности. В прошлом этот список ограничивался только задачами, решение которых не требовало творческого мышления и было свойственно только одному человеку. На современном этапе достижения научно-технического прогресса за последние два десятилетия значительно расширили этот список.
Специально для подобных задач сотрудники МТУСИ создали сверточные нейронные сети или CNN. Их задача — принимать изображения в качестве входной информации и, основываясь на результатах своей работы, выдавать названия классов объектов, которые были ранее определены в процессе обучения с помощью применения робастной функции потерь. В процессе разработки нейронной сети данные собирались с сервиса Auto.ru и камер наружного видеонаблюдения, а сам DataSet был собран размером более 90 тысяч экземпляров, которые в дальнейшем размещались и предобрабатывались, благодаря чему разработанная технология способна определять автомобили и их марки по отдельным элементам для повышения точности.
Искусственный интеллект сегодня является одним из наиболее перспективных направлений в ИТ-области. Одним из преимуществ своей разработки ученые называют точность. В перспективе нейросеть с легкостью способна облегчить обработку входящего видеопотока для более глубокого сбора информации о составе транспортного потока, что позволит более оптимально и безопасно управлять им.
Работа опубликована в журнале World Scientific.
- Источник(и):
- Войдите на сайт для отправки комментариев