Высокопроизводительные вычисления на страже твоего комфорта — как супер-ЭВМ каждый день меняют нашу жизнь?
Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.
Какое-то время продолжим трудится на общее благо по адресу
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.
Спасибо, ждём вас на N-N-N.ru
Блог компании FirstVDS. Рассчитать движение пары триллионов молекул, чтобы ты не забыл взять утром зонтик, или смоделировать работу настоящего сердца. Суперкомпьютеры уже давно влияют на нашу жизнь способами, о которых большинство из нас даже не догадываются. Результаты, получаемые с помощью высокопроизводительных вычислений, используются в каждодневной рутине любого человека — прогноз погоды, просмотр фильмов, управление онлайн-банкингом и множество других, казалось бы, обыденных действий.
Суперкомпьютеры, или как их еще называют «Супер-ЭВМ», используются для решения довольно специфических задач вроде моделирования сложных природных явлений или технических прототипов для предсказания поведения исследуемой системы.
Благодаря тому, что современные компьютеры представляют собой совокупность большого количество кластеров, они имеют колоссальную производительность — квадриллионы операций в секунду. По сути, это достигается подключением к кластеру обычных блейд-серверов до тех пор, пока не будет получена требуемая мощность.
Оригинальное решение своего рода суперкомпьютера на базе кластера из 1060 Raspberry Pi, показанное на конференции Oracle OpenWorld в 2019 году.
Ученые и корпорации используют этих электронных зверей для решения множества прикладных задач. Такие машины, как Sierra от компании Lawrence Livermore Lab, проверяют степень безопасности хранения ядерного оружия в правительственных арсеналах, рассчитывая радиус взрыва термоядерных боеголовок.
Хотя большая часть вычислительной мощности (125 квадриллионов операций в секунду) Sierra используется для научной работы — например, прогнозирования последствий рака, построения моделей человеческого сердца или картирования черепно-мозговых травм.
Суперкомпьютер Sierra, находящийся в секретной правительственной лаборатории штата Калифорния в помещениях площадью 7000 квадратных футов.
Прогноз погоды
Прогноз погоды уходит корнями к работам норвежского физика Вильгельма Бьеркнеса, которого считают отцом современной метеорологии. В 1904 году он опубликовал статью, в которой предположил, что можно прогнозировать погоду, решая систему нелинейных дифференциальных уравнений в частных производных.
Бьеркнес выделил пять основных составляющих прогноза погоды: атмосферное давление, температура, плотность воздуха, влажность и скорость воздушных потоков по осям XYZ. Хотя сегодня известно, что на атмосферу влияет гораздо больше сил — солнечная радиация, городская застройка и даже молекулярный состав самого воздуха.
Британский математик Льюис Фрай Ричардсон потратил три года на разработку методов и процедур для решения этих уравнений. Работая на полях сражений Первой мировой войны во Франции, где он был членом бригады скорой помощи, Ричардсон пытался вычислить прогноз изменения давления в одной точке пространства — на расчет ушло шесть недель, но предсказания оказалось совершенно нереалистичным.
Впрочем, позже Ричардсон предрекал существование «фабрики прогнозов», полагая, что тысячи компьютеров, каждый из которых будет отвечать за небольшую часть планеты, будут регулярно предсказывать погодные условия. И в целом он оказался прав — вместо тысячи компьютеров один большой и мощный.
Уже к 1954 году возможности моделирования и мощности компьютеров достигли такого уровня, что Европа и Соединенные Штаты стали активно рассматривать возможность численного прогноза погоды в реальном времени.
В те годы использовался компьютер IBM 701, дважды в день выпускающий прогнозы. Хотя, правды ради, эти прогнозы еще не могли конкурировать с теми, что были составлены вручную. Но необходимый стимул был уже заложен — к 1958 году производимые прогнозы стали демонстрировать неуклонно возрастающую точность.
Один из экземпляров IBM-701 серии IBM 700, которая предназначалась для крупномасштабных научных и технологических приложений.
Прогнозы строились на численной модели, отчего, собственно, и назывались «численными». По сути, это компьютерная программа, в основе которой лежат системы математических уравнений гидромеханики Эйлера, описывающие аэро-, гидро- и термодинамические процессы в атмосфере и связывающие такие параметры, как плотность, скорость, давление и температура, в единое целое.
В качестве исходных данных для моделей используются данные метеозондов, метеоспутников и наземных метеостанций.
Кстати, у каждой страны есть своя сеть метеоспутников: Meteosat у Европы, GOES у США, MTSAT у Японии, Fengyun у Китая, GOMS у России, KALPANA у Индии. Конечно, все они делятся между собой информацией, но по большей части работают на внутренний «рынок».
Правильная модель позволяет экстраполировать поведение атмосферы на ближайшее будущее и получать прогнозы. Хотя модели необязательно быть глобальной, покрывая всю Землю, — она может описывать изменение воздушного пространства и в более локальных участках планеты.
Чем больше в расчетах используется точек пространства, тем выше точность модели, но и тем выше требования к мощностям вычислительных устройств.
- Источник(и):
- Войдите на сайт для отправки комментариев