Физики ускорят разработку тонкопленочных материалов

Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.

Какое-то время продолжим трудится на общее благо по адресу https://n-n-n.ru.
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.

Спасибо, ждём вас на N-N-N.ru

Российские физики создали оборудование для ускорения разработки износостойких и жаростойких тонкопленочных материалов. Чтобы получить требуемый комплекс свойств на поверхности конструкционных материалов, предназначенных в том числе для работы в экстремальных условиях, разработчикам порой необходимо несколько месяцев и даже лет. Специалисты Института сильноточной электроники СО РАН (ИСЭ СО РАН) с коллегами из Института ядерной физики им. Г.И. Будкера СО РАН (ИЯФ СО РАН) создали вакуумно-электронно-ионно-плазменный стенд (ВЭИПС), который позволит в разы снизить срок таких работ.

Стенд установлен на канал синхротронного излучения (СИ), и специалисты могут наблюдать in situ, как происходит эволюция фазового состава, параметров структуры упрочняющих, антикоррозионных и жаростойких покрытий в ходе их нанесения на материал. Это позволит в режиме реального времени оптимизировать процесс нанесения покрытия, сообщили в пресс-службе ИЯФ СО РАН.

Предварительные эксперименты по отработке технологии проходят в ЦКП «Сибирский центр синхротронного и терагерцового излучения» (ЦКП «СЦСТИ»). В будущем стенд заработает на одной из пользовательских станций ЦКП «СКИФ». Стенд создан по Федеральной научно-технической программе развития синхротронных и нейтронных исследований и исследовательской инфраструктуры на 2019 – 2027 годы.

Поверхностная инженерия помогает улучшать физико-механические свойства и эксплуатационные характеристики материалов. Она включает множество методов модификации поверхности, в том числе пучково-плазменные. Чтобы произошло осаждение упрочняющих и жаростойких пленок или формирование новых соединений на поверхности материала, на нее воздействуют потоками ионов, плазмы, пучками электронов, лазерным излучением и др.

«Методов инженерии поверхности довольно много, – рассказал заведующий лабораторией пучково-плазменной инженерии поверхности ИСЭ СО РАН Владимир Денисов. – В Институте мы создаем электроразрядное и плазменное оборудование и разрабатываем технологии, которые позволяют улучшать характеристики материалов. Например, воздействуя на поверхность какой-то детали плазмой, мы можем осадить на нее ионы титана и азота, которые, вступая в химическую реакцию друг с другом, образуют единую кристаллическую решетку и формируют покрытие нитрид титана. Твердость такого металлокерамического покрытия составляет 25 Гигапаскалей, что значительно выше этой же характеристики у твердого сплава».

В целом все методы направлены на решение одной большой задачи – создание конструкционных материалов, способных работать в экстремальных условиях.

Подробнее
Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 5 (2 votes)
Источник(и):

Наука.РФ