Инструменты AutoML в 2024
Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.
Какое-то время продолжим трудится на общее благо по адресу
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.
Спасибо, ждём вас на N-N-N.ru
Автор: koch @koch. Определимся с терминологией. Можно найти c десяток формулировок «AutoML – это… с разной степенью детализации. Но все они сведутся к словам «AutoML — автоматизирует и упрощает работу с данными». И вот здесь как раз и начинаются сложности. Границы определения AutoML размыты. Есть фреймворки работающие на «3 строчках» кода, есть с платформы с GUI, есть библиотеки для профессионалов и новичков.
В AutoML идут по нескольким причинам: по неопытности, из-за лени, от нехватки времени, из-за большого ума. Автор, скорее относится к первым трем категориям.
Пожалуй, основное, что надо понимать, впуская AutoML в свои проекты – это не волшебная таблетка для всех задач. Для каждого типа проблем мы можем использовать свой инструмент. Мне скорее нравится смотреть на подмножество AutoML как на комнату инженера-ремесленника, где собраны шурупы, отвертки, молотки, дрели, станки и шлифовальные машины. Войти в эту комнату просто, а вот выбрать нужный инструмент, получить результат и выйти из комнаты без травм не всегда получается.
В каких прикладных задачах AutoML может помочь?
- Подготовка данных для моделей
- EDA
- Feature Engineering
- Отбор моделей и их параметров
- Объяснимость моделей
- Блендинг, стекинг
- вывод в жизнь*
- — если для табличных данных и классических ML задач, решаемых через регрессии и классификации, AutoML будет точно хорош, то с временными рядами, мультимодальными данными и выводом решений в жизнь есть вопросики.
Что из AutoML попробовать?
Ниже приведу краткий справочник по инструментарию AutoML (актуально на май 2024)
- Источник(и):
- Войдите на сайт для отправки комментариев