Машинное обучение помогло найти в природе 860 тысяч потенциальных пептидных антибиотиков. В эксперименте 63 из 100 образцов оказались активны против устойчивых патогенов

Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.

Какое-то время продолжим трудится на общее благо по адресу https://n-n-n.ru.
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.

Спасибо, ждём вас на N-N-N.ru

Австралийские, американские, ирландские, испанские, китайские и немецкие исследователи применили алгоритмы машинного обучения для анализа имеющихся геномных и метагеномных баз данных с целью предсказать и каталогизировать возможные антимикробные пептиды. Это короткие последовательности (10–100 аминокислотных остатков), которые каким-либо образом (чаще всего разрушая микробную стенку) подавляют рост определенных бактерий.

Луис Педро Коэльо (Luis Pedro Coelho) из Квинслендского технологического университета с коллегами из пяти стран проанализировал с помощью машинного обучения датасет из 63410 метагеномов и 87920 геномов прокариот (как свободноживущих, так и связанных с многоклеточными организмами-хозяевами). В итоге они составили каталог AMPSphere, в который вошли 863498 неизбыточно повторяющихся потенциальных антимикробных пептидов, и большинства из них в имеющихся базах данных нет.

Отчет о работе опубликован в журнале Cell.

В качестве подтверждения концепции исследователи синтезировали и испытали in vitro и in vivo 100 предсказанных пептидов, потенциально активных в отношении клинически значимых патогенов, а также комменсалов человеческой кишечной микробиоты. Из них 79 показали антимикробную активность, причем 63 действовали прицельно на высокопатогенные антибиотикоустойчивые бактерии ESKAPEE. В экспериментах на мышах с абсцессом кожи их действие напоминало эффект применяемого в клинической практике пептидного антибиотика полимиксина B.

Пожалуйста, оцените статью:
Пока нет голосов
Источник(и):

N+1