На российском ядерном буксире «Зевс» – от Венеры до Юпитера
Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.
Какое-то время продолжим трудится на общее благо по адресу
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.
Спасибо, ждём вас на N-N-N.ru
Идея использовать ядерную энергию для движения космических кораблей была озвучена еще в 1960-е годы Курчатовым, Королевым, а также Келдышем. И работы в этом направлении велись: советская организация «Энергия» проектировала атомную установку, способную работать на орбите.
После развала Союза вопросом создания ядерного двигателя для космического аппарата стали заниматься с 2010-го года. Программа получила название «Нуклон», корабль, работающий на атомной энергии – «Зевс». Зачастую его называют «ядерным буксиром». Впервые широкой общественности продемонстрировали макет на салоне МАКС-2019. А о том, как будет работать буксир, рассказали и показали в трехмерной графике на выставке «Армия-2020».
Что требуется для освоения дальнего космоса
Нынешние аппараты для разгона используют химическое топливо, главная проблема которого заключается в быстром расходе. Чтобы достичь орбиты, нужно иметь очень объемные баки. Разогнавшись, дальше ракета летит сама, пользуясь оставшимся топливом для маневрирования. При этом скорость выходящих газов достигает 4,5 км/сек.
На химическом топливе сегодня далеко не улетишь. Фото: YouTube.com
Правда, существует необычный метод для получения дополнительного ускорения. Речь идет о пролете рядом с какой-нибудь планетой, гравитационная система которой «подтолкнет» космический аппарат. Но этот способ довольно сложный, требует точных расчетов и увеличивает время выполнения полета к конкретной цели. К тому же метод гравитационного ускорения не всегда подходит.
Ионные двигатели – в чем разница?
Здесь рабочее тело (ртутные пары, ксенон, аргон), находящееся в электрическом поле, разгоняется гораздо быстрее, чем потоки газов, вырабатываемые химическим топливом. Ионный двигатель способен разгонять космический аппарат до скорости в 210 км/сек. Рабочего тела нужно меньше и функционировать инертные газы смогут значительно дольше.
Ионные агрегаты уже применяют, в основном для выполнения маневров, а также используют в качестве маршевого двигателя, например, в аппарате «Хаябус» (Япония). Он достиг астероида Итокава и сумел вернуться обратно.
Есть и минус – относительно малая тяга. Однако если учесть огромные расстояния и продолжительность действия ионных двигателей, то в итоге они буду эффективнее химических.
Как работает ядерный буксир
Чтобы космический корабль получился надежным и быстрым, логично установить на него одновременно несколько агрегатов. Но тут возникает проблема: для ионизации необходимо большое количество энергии. Солнечные батареи выдать столько электричества не смогут. К тому же панели будут терять свою эффективность по мере удаления от светила.
Солнечные батареи тоже пригодятся. Фото: YouTube.com
Решение проблемы найдено: нужно на борту аппарата запустить ядерный реактор, который будет располагаться в отдельном модуле. Система должна функционировать, как на Земле. Вырабатывается тепло, которое затем посредством турбин превращается в электричество. Оно и будет подавать энергию к ионным двигателям.
«Зевс» с развернутыми системами. Фото: YouTube.com
Здесь тоже имеется свой минус – медленный (по сравнению с химическими агрегатами) набор скорости. К примеру, до нашего спутника корабль с ионным двигателем доберется не так скоро, как используемые ныне аппараты. Но зато не потребуется «таскать» с собой большой запас горючего.
А это значит, что до дальних планет, например, Марса, корабль с ядерным реактором в итоге долетит быстрее. Да еще и сможет без дозаправок вернуться на Землю.
- Источник(и):
- Войдите на сайт для отправки комментариев