Термоэлектрический эффект в углеродной нанотрубке

Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.

Какое-то время продолжим трудится на общее благо по адресу https://n-n-n.ru.
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.

Спасибо, ждём вас на N-N-N.ru

Группа ученых из Кореи и США обнаружила, что химическая реакция горения нанометрового слоя гексогена может проходить в 10 000 раз быстрее, если он окружает многостенную углеродную нанотрубку. Более того, одновременно с горением гексогена в нанотрубке возникает импульс напряжения, мощность которого в пересчете на единицу суммарной массы гексогена и нанотрубки может на порядок превосходить аналогичную величину, создаваемую в современных литий-ионных аккумуляторах. Описанный эффект, обнаруженный впервые, не укладывается в рамки классический теорий, связывающих тепловые и электрические явления. По мнению исследователей их открытие может найти применение как источник энергии для микро- и наномеханических устройств.

Несмотря на то что с момента «официального» открытия углеродных нанотрубок прошло уже почти 20 лет (некоторые ученые полагают, что нанотрубки наблюдали не в 1991 году, а значительно раньше, еще в начале 50-х годов ХХ века), экспериментальные и теоретические исследования данной аллотропной формы углерода по-прежнему остаются «горячей» темой в науке. Как показали многочисленные исследования, углеродные нанотрубки за счет своих уникальных физических свойств могут оказаться очень полезными в самых разнообразных областях человеческой деятельности: микроэлектронике, биомедицине, конструировании высокопрочных конструкций, создания нанодвигателей и т. д.

Работу американских и корейских ученых Chemically driven carbon-nanotube-guided thermopower waves, опубликованную в журнале Nature Materials, безусловно, следует считать значительным прогрессом в области «нанотрубочной энергетики». Авторы статьи при помощи серии экспериментов обнаружили, что горение легко воспламеняющегося циклотриметилентринитрамина (более известного как гексоген) в присутствии многостенной углеродной нанотрубки генерирует в ней импульс электрического напряжения с неожиданно большой удельной мощностью (то есть мощностью на единицу суммарной массы гексогена и нанотрубки) — около 7 кВт/кг, что практически на порядок превосходит аналогичную характеристику, создаваемую при помощи литий-ионных аккумуляторов.

Эксперимент заключался в следующем: многостенная углеродная нанотрубка с заданными диаметром и длиной окружалась вдоль своей оси нанометровым (толщиной 7 нм) слоем гексогена (рис. 1). Полученная цилиндрическая гетероструктура с помощью лазерного луча или импульса электрического напряжения поджигалась на одном из своих концов.

Рис. 1. Механизм химической реакции системы «углеродная нанотрубка—гексоген». Вверху — многостенная углеродная нанотрубка (CNT), обернутая в нанометровый слой гексогена (TNA): схематический рисунок (слева) и химическая структура (справа). Внизу — методика эксперимента и возникновение тепловых волн. Рисунки из обсуждаемой статьи в Nature Materials

Начиная с этого момента ученые фиксировали необычные явления, которые до них никто не наблюдал и которые, как оказалось, не укладываются в рамки существующих физических теорий, описывающих взаимосвязь между тепловыми и электрическими процессами. Прежде всего, авторы статьи отмечают, что возникающая в результате воспламенения гексогена тепловая волна (волна теплопроводности) распространялась преимущественно вдоль системы «углеродная нанотрубка — гексоген» в 10 тыс. раз быстрее, чем те же волны в чистом гексогене без нанотрубочной вставки. Можно сказать иначе: углеродная нанотрубка служила сильным катализатором химической реакции горения гексогена.

Но не на этом явлении акцентируют внимание исследователи в своей статье. Второй обнаруженный эффект был наиболее интересным и значимым. Оказалось, что одновременно с быстрым распространением тепловой волны происходило рождение импульса напряжения (рис. 2a–c), достигающего в некоторых экспериментах 210 мВ (милливольт) и отличающегося значительной (для системы с такими размерами) мощностью; см. также видео эксперимента с поясняющими субтитрами.

На первый взгляд может показаться, что ничего удивительного в этом нет. Еще с XIX века физикам хорошо известен эффект Зеебека, заключающийся в том, что перепад температур в проводнике создает в нём разность потенциалов (напряжения) между областями с разной температурой. Возникающее напряжение, которое еще называют термоЭДС, пропорционально разности температур в проводнике; коэффициент пропорциональности называется коэффициентом термоЭДС (вообще говоря, эффект Зеебека представляет собой один из трех так называемых термоэлектрических эффектов, наряду с эффектом Пельтье и эффектом Томсона). То есть кажется абсолютно логичным и ожидаемым, что движение тепловой волны, а вместе с ней и температурного градиента, приводит к появлению импульса электрического напряжения — термоЭДС. Однако исследователи установили, что для большинства систем «углеродная нанотрубка — гексоген» возникающая разность потенциалов имеет существенно большее значение, нежели предсказываемое теорией эффекта Зеебека, «заточенной» под углеродную нанотрубку, при условии, что коэффициент термоЭДС для нее известен (он был измерен ранее).

Помимо этого, в изучаемом объекте разность температур не зафиксирована жестко, как это происходит в «статическом» эффект Зеебека, а перемещается вдоль углеродной нанотрубки, то есть имеет место своеобразный «динамический» эффект Зеебека.

Наконец, и это самое важное, мощность импульса термоЭДС в пересчете на единицу суммарной массы гексогена и нанотрубки, оказалась очень высокой. Для некоторых систем эта величина превышала 7 кВт/кг (рис. 2d). Фактически в распоряжении ученых оказался хоть и крохотный, но очень мощный источник энергии. Интересно, что если сравнить энергетический выход современных литий-ионных аккумуляторов и таких вот «нанотрубочных генераторов», то последние имеют почти на порядок большую удельную мощность.

chemically_driven_thermopower_wave_600.gif Рис. 2. (a) Рисунок экспериментальной установки, с помощью которой был обнаружен импульс напряжения (термоЭДС) при горении гексогена. В зависимости от направления прохождения тепловых волн в системе «углеродная нанотрубка — гексоген» термоЭДС может иметь как положительный, так и отрицательный знак (разные направления протекания тока). (b) Сразу после воспламенения гексогена возникает импульс напряжения, достигающий в пределе 30–35 мВ (в некоторых экспериментах ученые фиксировали рекордные 210 мВ) и имеющий определенную полярность в зависимости от того, с какой стороны начинает идти реакция. Отношение масс гексогена и углеродной нанотрубки (TNA/CNT) для данной величины термоЭДС составляло 9, общая масса системы была 0,8 мг, длина нанотрубки 3 мм. © Увеличение суммарной массы нанотрубки и гексогена приводило к уменьшению скорости тепловых волн и появлению нескольких импульсов напряжения противоположной полярности (верхний график). Аналогичная картина наблюдалась, когда гексоген поджигался не с конца нанотрубки, а с ее середины. На вставках к графикам приведены параметры системы. (d) Зависимость удельной мощности электрического импульса от общей массы системы для различных отношений масс гексогена и нанотрубки (9; 4,5 и 2,8) и для двух диаметров многостенной нанотрубки (13 и 22 нм). Зеленая сплошная линия соответствует расчету зависимости, опирающейся на классический «статический» эффект Зеебека для углеродной нанотрубки в предположении, что на ее концах создана разность температур 300 и 2800 К (температура горения гексогена). Рисунки из обсуждаемой статьи в Nature Materials

Однако не всё оказалось настолько радужным и перспективным. Дальнейшие эксперименты, проведенные авторами статьи, установили сильную обратную зависимость между суммарной массой нанотрубки и гексогена и удельной мощностью, вырабатываемой ими. Проще говоря, мощным «нанотрубочный генератор» является лишь тогда, когда его масса очень маленькая, и чем меньше она, тем лучше.

Несмотря на такое ограничение, исследователи полагают, что их открытие можно будет использовать в будущем именно как эффективные источники энергии для разнообразных микро- и наномеханических устройств, для которых традиционные литий-ионные технологии могут оказаться не настолько полезными.

Юрий Ерин

Опубликовано в NanoWeek,


Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 4.5 (4 votes)
Источник(и):

elementy.ru



sur аватар

да, углеродные наноматериалы способны ещё не раз поразить нас своими удивительными свойствами. Но в этой работе использовались очень высокие термоградиенты. А как быть с разностью температур в 10–20 градусов и появления при этом заметной термоЭДС? Этот эффект на спрессованных углеродных материалах демонстрировал В.Петрик http://www.goldformula.ru/index.php?… группе академиков-химиков, однако академики-физики просто завопили (Э.Кругляков, С.Захаров), обвинив всю эту компанию лжеучёнами, а сам наблюдаемый эффект- нарушением второго закона термодинамики. Подозреваю, с этими углеродными наноматериалами (а так же с другими, например, нанокатализаторами) нам кое-какие представления о физике, невзирая на обвинения невежд-академиков в лженаучности, придётся пересмотреть.

sur аватар

Почему бы российским академикам-физикам, защитникам науки от мракобесия, не объявить американских исследователей лжеучёными за их попытки работать с небольшими температурными градиентами? Вот о чем идёт речь:

Низкоэнергетические датчики с питанием от «теплового градиента» Опубликовано empirv в 17 февраля, 2010 – 16:31 Исследователи из Массачусетского технологического института (MIT) приступили к первой из двух серий исследований, направленных на создание датчиков, способных работать в течение продолжительного времени (вплоть до всего срока своей службы) без необходимости замены элементов питания. В отличие от строителей всякого рода вечных двигателей, специалисты из MIT полагаются на строго научный фундамент – они полагают, что для работы электрических схем с ультранизким уровнем потребления может оказаться достаточным использование разницы температур в несколько градусов между частями объектов, или между объектами и окружающей средой…

Вот была бы потеха на весь мир!!!