Nano: Самое интересное

Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.

Какое-то время продолжим трудится на общее благо по адресу https://n-n-n.ru.
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.

Спасибо, ждём вас на N-N-N.ru

В недрах телефона, лежащего в заднем кармане ваших брюк, заключено в миллионы раз больше информации, нежели могло вместиться в устройство хранения, размером с холодильник, более десятилетия-двух назад. За прошедшее время технологии хранения данных и устройства на их основе постепенно уменьшались в размерах, увеличивая одновременно с этим информационную емкость. И недавно исследователи из компании IBM создали самый маленький магнит на сегодняшний день, магнит, величиной с один атом, и это может привести к появлению в скором времени магнитных устройств хранения данных, которые могут содержать в тысячи раз больше информации, нежели лучшие из существующих накопителей сопоставимых размеров.

Точный контроль движения потоков электронов делает возможным создание сложных логических схем и другой микроэлектроники, которая функционирует внутри наши смартфонов, компьютеров и прочей техники. Контроль за распространением тепла имеет практически такое же фундаментальное значение, при его помощи можно создавать эффективные системы охлаждения и отвода тепла от горячих компонентов. Однако, процесс распространения тепла менее изучен, нежели процесс распространения электрического тока, из-за чего ученые стараются заполнить все пробелы в этой области знаний. И недавно, усилиями международной группы ученых, была создана технология, реализованная в виде наноразмерной системы, использование которой позволит прояснить большинство малоизученных моментов процесса переноса тепла. Более того, при помощи этой системы ученым уже удалось выяснить, что закон Видеманна-Франца (Wiedemann-Franz law), сохраняется при уменьшении масштаба системы до атомарного уровня.

Инженеры холдинга «Росэлектроника» создали новейшую систему освещения, которая основана на использовании лазерного излучения. Эти осветительные приборы способны работать в агрессивных средах вроде атомных станций и даже под водой. Излучение проходит к ним по оптоволокну, что исключает опасность возникновения пожара или взрыва вследствие возникновения искры.

Учёные из Военно-морской лаборатории США создали новый материал для брони, который отличается от всех прочих лёгкостью и баллистическими характеристиками. Термопластичный полимер твердеет под воздействием ударов, но после этого его снова можно вернуть в первоначальное состояние. Бронежилеты, сделанные из такого материала, можно будет чинить буквально на ходу, использовав подручные средства.

Японские ученые разработали амебообразного микроробота, состоящего только из биомолекул и способного управляемо передвигаться. Отчет о работе опубликован в журнале Science Robotics.

Американские ученые обнаружили новую, седьмую степень окисления плутония. Результаты работы опубликованы в The Journal of American Chemical Society.

Международная группа ученых из Университета Кюсю (Япония), Института Макса Планка (Германия) и Массачусетского технологического института разработали суперсталь. За образец они взяли кость человека — она легкая, прочная и устойчива к образованию трещин, благодаря своей иерархически организованной структуре. В результате у нового материала дольше не возникает явление, известное как усталость металла. Свои результаты разработчики изложили в статье в журнале Science.

Разработки ученых Томского политехнического университета для имплантологии успешно используются в ветеринарии. Сегодня титановые имплантаты с биоактивными покрытиями уже применяют для лечения домашних животных врачи новосибирской ветеринарной клиники «БЭСТ». Первыми четвероногими пациентами, для лечения которых были применены томские покрытия для имплантатов, стали коты Томас и Кутузов.

Физики использовали наночастицы золота и «умный клей» ДНК для создания коллоидного аналога так называемого решетчатого клатрата. Полученные кристаллы интересны сами по себе своей впечатляющей сложностью структуры, потенциально их можно использовать для защиты окружающей среды от загрязнений и в медицине для распознавания вирусов. Описание работы опубликовано в журнале Science.

Американские физики-теоретики («Коллаборация χQCD») впервые рассчитали вклад глюонов в суммарный спин протона. По данным ученых он составляет примерно половину абсолютной величины. Ранее экспериментальные методы показали, что вклад кварков соответствует примерно трети абсолютной величины протонного спина. Детали того, из чего складывается спин протона до сих пор не известны, уточнить их помогут новые поколения электрон-ионных коллайдеров. Исследование опубликовано в журнале Physical Review Letters, кратко нем сообщает Physics.

Международная группа ученых, в которую вошел сотрудник Института проблем передачи информации им. А. А. Харкевича Российской академии наук (ИППИ РАН) и Института Вейцмана (Израиль) Григорий Фалькович, показала, что сильное взаимодействие электронов в наноструктурах может приводить к резкому уменьшению электрического сопротивления. Результаты опубликованы в журнале Proceedings of the National Academy of Sciences.

Международная группа исследователей разработала концепцию портативного анализатора химических веществ. Они считают, что рабочую модель можно будет сделать через пять лет, а через десять будет готов вариант устройства для продажи. Статья коллектива опубликована в журнале Nano Letters.