Nano: Самое интересное

Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.

Какое-то время продолжим трудится на общее благо по адресу https://n-n-n.ru.
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.

Спасибо, ждём вас на N-N-N.ru

Графен известен всем в большей части как первый двухмерный материал, полученный учеными. Однако, его тончайшая плоская двухмерная структура как раз и является препятствием к использованию целого ряда удивительных свойств графена, высочайшей механической прочности, легкости и отличной проводимости по отношению к электричеству и теплу. Не так давно ученые из Массачусетского технологического института разработали новый «трехмерный» материал на основе графена, который в 10 раз более прочен, нежели сталь, а теперь ученые из университета Райс, продолжив предыдущую работу, создали материал на основе графена, укрепленного углеродными нанотрубками. Получившаяся «пена» может быть отформована прессованием и она выдерживает без изменений своей структуры воздействие веса, в 3 тысячи раз превышающего ее собственный вес.

Исследователи из Техасского университета в Далласе создали крошечный вариант атомно-силового микроскопа (Atomic Force Microscope, AFM), размер чипа которого соответствует размеру монетки небольшого достоинства. И, помимо сокращения размеров, ценник этого устройства, используемого для определений свойств разных материалов, также претерпел кардинальные изменения, сделав его более доступным даже для не очень крупных исследовательских и учебных лабораторий.

Используя новый метод сбора, ученые из Стэнфордского университета смогли выделить в три раза больше уранила из океана за 11-часовой период, чем было возможно ранее. Этот метод может оказаться экологически чистой альтернативой нынешних методов добычи урана и сделает ядерную энергетику более привлекательным энергетическим вариантом.

Один из фундаментальных постулатов современной физики гласит, что в среде идеального вакуума – пространстве, не содержащем какую-либо материю, – не может существовать такого процесса, как трение, потому как полностью пустое пространство не может воздействовать этой силой на объекты, проходящие через него.

Первое свое «растение-киборг» Магнус Йонссон (Magnus Jonsson) и его коллеги из Линчёпингского университета получили еще в 2015 г. Тогда им удалось найти жидкий полимер, достаточно хорошо проводящий ток, химически инертный и нетоксичный для растения, не забивающий «сосуды» его ксилемы.

Ученые Университета Хоккайдо создали усиленный плетеными волокнами гидрогель, эластичный, но при этом более прочный, чем металл, с широким спектром применения.

Инженеры из Массачусетского технологического разработали материал, который сжимается и становится компактным на холоде, зато расслабляется и вытягивается во все стороны в тепле.

МОСКВА, 28 дек – РИА Новости. Химики из Московского университета имени М.В.Ломоносова создали наночастицы, способные нейтрализовать мощнейшие виды химического оружия, такие как газ VX, и похожие на него пестициды, говорится в статье, опубликованной в Journal of Controlled Release.

Канадские исследователи показали, что проживание в небольших населенных пунктах, где для обогрева помещений используются дровяные печи, повышает риск инфаркта миокарда у пожилых людей. Статья опубликована в журнале Epidemiology.

Исследователи из Северо-Западного федерального медицинского исследовательского центра имени В.А. Алмазова работают над созданием наноразмерных носителей лекарственных средств для лечения ишемической болезни сердца и для нового способа интраоперационной (во время операции) диагностики повреждения сердечной мышцы. Ученые опубликовали результаты исследований в журналах Biomedical Optics Express и Drug Delivery. Исследования поддержаны грантом Российского научного фонда.

Новый двумерный полупроводник, способный произвести революцию в электронике, разработан профессором Акселем Эндерсом (Axel Enders) из Физического института Университета Байройта (Германия) при участии коллег из США и Польши.

Использование в зарядовых эффектах ионов, наряду с электронами или вместо них, открывает новые возможности для создания резистивной памяти с электрической коммутацией.