Nano: Самое интересное

Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.

Какое-то время продолжим трудится на общее благо по адресу https://n-n-n.ru.
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.

Спасибо, ждём вас на N-N-N.ru

Университет Саутгемптона представил мемристоры, которые могут использоваться для управления системами искусственного интеллекта, моделирующими работу мозга, сообщается на сайте университета.

Исследователи Университета Индианы доложили об открытии новой молекулярной структуры, которая потенциально способна безопасно сберегать ядерные отходы и химические вещества, загрязняющие воду и убивающие рыбу.

Выбор одного определенного изображения из тысячи является достаточно простой задачей для мозга человека. Миллиарды нейронов, соединенные еще большим количеством синапсов, быстро обрабатывают поступающую информацию и принимают решения, используя принципы параллельной обработки информации. Стремясь повторить подобные принципы, инженеры и ученые некоторое время работают с мемристорами, электронными приборами, работа которых в некотором роде подобна работе синапсов. И недавно исследователи из Массачусетского университета (University of Massachusetts) создали электронную схему на базе мемристора, которая соответствует синапсу в большей мере, нежели любая другая подобная схема.

Свет, сфокусированный в маленькую точку, обладает огромной силой. Исследовательская группа, возглавляемая профессором Йоргом Шрайбером (Jorg Schreiber) из Института экспериментальной и медицинской физики (Institute of Experimental Physics – Medical Physics), Мюнхен, Германия, использовала «взрывной» характер света, сфокусированного на крошечных пластмассовых частицах, диаметром в несколько микрометров, для получения излучения, состоящего преимущественно из положительно заряженных частиц, протонов. Подобная технология получения лучей может использоваться для лечения онкологических заболеваний, в новых методах микросъемки или отображения информации.

Группа исследователей из Имперского колледжа в Лондоне, Гарвардского университета и Массачусетского технологического института использовала силы давления света для создания динамического голографического материала. В отличие от других голографических материалов новый материал может быть многократно «перезаписан» и он может сохранять свое состояние сколь угодно долгое время, не требуя для этого энергии из внешнего источника. Материал, обладающий столь интересным набором свойств, может найти применение в трехмерных голографических дисплеях, в устройствах оптического хранения информации, в биодатчиках, в перестраиваемых лазерах и т.п.

Британские ученые Дэвид Таулесс, Дункан Холдейн и Майкл Костерлиц получили в этом году Нобелевскую премию по физике «за теоретические открытия топологических фазовых переходов и топологических фаз вещества». Упоминание «теоретических открытий» наводит на мысль, что их работа не нашла или не найдет практического применения и не повлияет на нашу жизнь. Но верно как раз обратное.

Гусеница тутового шелкопряда в течение 26–32 дней питается исключительно листьями дерева шелковицы, после чего сплетает для себя кокон из непрерывной шёлковой нити длиной от 300 до 1500 метров. Эти белые коконы активно используются в текстильной промышленности для производства шёлка. Толщина шёлкового волокна составляет всего 20–30 микрометров, а разрывное напряжение – около 40 кгс/мм². Не так давно китайским учёным удалось в ходе необычного эксперимента получить куда более прочную шёлковую нить с необычными свойствами, способную заинтересовать даже Спайдермена.

Группа физиков из Национальной лаборатория имени Лоуренса в Беркли создала первый в мире транзистор, размер затвора которого составляет всего лишь один нанометр. Это на порядок меньше, чем размер затворов самых маленьких по размеру современных транзисторов.

Ученые разработали новые интегральные микросхемы с хаотичой структурой. Они позволят выполнять множественные задачи, используя меньшее количество транзисторов.

Закон Мура сможет быть актуальным еще несколько десятилетий благодаря разработке группы исследователей из лаборатории Беркли в США. Ученые создали функциональный транзистор с затвором длиной 1 нанометр. Ранее физики считали 5 нанометров предельным размером для устройств такого типа.

Команда ученых из университетов Колумбии и Виргинии в ходе эксперимента впервые наблюдала негативную рефракцию электронов, проходящих через границу двух сред в проводящем материале. Это открытие, опубликованное в журнале Science, может привести к развитию новых типов электронных переключателей, основанных на оптических принципах.

Исследователи из Делфтского технического университета, Висконсинского университета и университета Айовы обнаружили, что стабильность кубитов в обычном кремнии может быть увеличена в 100 раз по сравнению с дорогим арсенидом галлия. Это значительно приблизило перспективу создания рабочего квантового компьютера.