Nano: Самое интересное

Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.

Какое-то время продолжим трудится на общее благо по адресу https://n-n-n.ru.
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.

Спасибо, ждём вас на N-N-N.ru

Исследователи из Вашингтонского университета в Сиэтле разработали технологию, которая позволит имплантатам конвертировать Bluetooth-сигнал в Wi-Fi и передавать данные. Работа исследователей опубликована в Computer Science, а краткое ее изложение приводит MIT Technology Review. По оценке разработчиков, новая технология позволит имплантатам передавать данные потребляя минимум энергии.

Квантовомеханический эффект резонансного туннельного перехода заключается в переходе электронов под действием определённого электрического напряжения из одной квантовой ямы (квантового состояния) в другую. Это напряжение может использоваться для перевода электрона в одно из двоичных (ON или OFF) состояний, что позволяет применить резонансное туннелирование в быстродействующих коммутаторах для нового класса энергоэффективной электроники.

Термоэлектрические явления это фундаментальная основа для новых процессов обработки информации. Они предоставляют возможность утилизации тепла, выделяющегося в других процессах, внося вклад в повышение энергетической эффективности и экологической безопасности различных устройств.

Ученые много лет искали различные способы заставить водород войти в металлическое состояние. Металлическое состояние водорода — это святой Грааль в материаловедении, поскольку его можно использовать для сверхпроводников: материалов, которые не препятствуют току электронов, что повышает эффективность передачи электроэнергии во много раз. Впервые за все время ученые под руководством Виктора Стружкина из Университета Карнеги, смешав водород с натрием, экспериментально произвели новый класс материалов, которые обещают изменить картину в области сверхпроводников и могут быть использованы для хранения водородного топлива. Исследование было опубликовано в Nature Communications.

Китай планирует запустить новый спутник, который, возможно, станет первым звеном новой коммуникационной сети нового поколения. С помощью аппарата QUESS весом 600 килограммов, который планируется вывести на орбиту в августе этого года, ученые собираются провести первый квантовый эксперимент в космосе, который в перспективе может открыть дверь к появлению «квантового космического интернета».

Революционный продукт, под названием IRIS II, был представлен публике еще в начале июля, но только недавно получил одобрение на проведение клинических испытаний от ведущих европейских медицинских организаций.

Квантовая запутанность – одно из самых сложных понятий в науке, но основные её принципы просты. А если понять её, запутанность открывает путь к лучшему пониманию таких понятий, как множественность миров в квантовой теории.

Физики из Университета Буффало разработали компактные лазерные источники закрученного света, сравнимые по размеру с компьютерными чипами. Устройство может найти применение в технологии оптических компьютеров. К примеру, в закрученном свете можно передавать в десять и более раз больше информации, чем в обычных оптических сигналах. Исследование опубликовано в журнале Science, кратко о нем сообщает пресс-релиз университета.

Материаловеды из университетов Пекина и Шаньси разработали голограмму на основе метаматериалов, способную независимо управлять фазой трех различных длин волн света. С ее помощью можно закодировать цветное изображение. Исследование опубликовано в журнале Nano Letters, кратко о нем сообщает Phys.org.

Химики из Чжэцзянского университета разработали материал, способный резко и обратимо менять свою форму под действием внешних воздействий — тепла и колебаний кислотности. На создание материала ученых вдохновили листья венериной мухоловки (Dionaea muscipula), способные быстро захлопываться после попадания в них добычи. Работа опубликована в журнале Materials Horizons, кратко о ней сообщает блог Королевского химического общества.

Физики из Фуданьского университета разработали устройство, способное сохранять температуру определенной области почти постоянной не затрачивая на это энергии. Экспериментальный термостат работает в условиях разницы температур с разных сторон. При повышении температуры на одной из границ области на 30 градусов температура термостата изменилась лишь на 1 градус. Новый термостат может найти применение для охлаждения электроники космических аппаратов — разница температур освещенной и неосвещенной сторон космических кораблей может составлять сотни градусов. Исследование опубликовано в журнале Physical Review Letters, кратко о нем сообщает Physics.**

Самое знаменитое уравнение Эйнштейна вычисляется более красиво, чем это можно было бы ожидать.