Нанофизики обнаружили неожиданный магнитный эффект
Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.
Какое-то время продолжим трудится на общее благо по адресу
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.
Спасибо, ждём вас на N-N-N.ru
Испанские и американские физики, изучающие наноэлектронику, выяснили, что размер имеет-таки значение, когда речь заходит о прогнозе поведения электрических контактов толщиной в атом
В новом исследовании, опубликованном в издании Nature, физики из университета Аликанте в Испании и университета Райс в Хьюстоне обнаружили, что атомные контакты, сделанные из ферромагнитных металлов, таких как железо, кобальт и никель, ведут себя иначе, чем те, что применяются в современных электронных устройствах.
«Мы выяснили, что последний атом в самом конце ряда ведет себя иначе, чем мы ожидали», сообщил соавтор исследования Даг Нательсон, адъюнкт-профессор физики и астрономии университета Райс. «Оказывается, изменяя размер этих металлов, мы действительно можем изменить и их свойства».
Результаты исследования основаны на эффекте Кондо, одном из наиболее часто и полно изученных феноменов магнитных материалов. Раньше, на заре развития электромагнетизма, ученые знали, что нормальные металлы, например, медь, лучше проводят электричество, когда охлаждаются. Но в 1930-х ученые обнаружили, что добавление даже незначительного объема ферромагнитных металлов, например, железа, нейтрализует данное правило. В 1960-х японский физик Юн Кондо объяснил этот эффект: охлаждаясь, в нормальных металлах снижается частота колебаний атомов и, как следствие, понижается электрическое сопротивление. Мобильные электроны в металлах обычно имеют тенденцию менять спин в направлении, противоположном спину электронов магнитного атома. А потому при низкой температуре электрон, перемещающийся за ферромагнитной примесью, будет транспонировать спин и отклоняться от заданного курса. Это объясняет, почему даже крошечные ферромагнитные примеси могут повысить электрическое сопротивление, несмотря на дальнейшее охлаждение.
Ученые не ожидали, что эффект Кондо будет играть какую-либо роль в проводах и контактах, сделанных полностью из ферромагнитных металлов, таких как железо, кобальт и никель. Соавторы исследования Мария Рейес Кальво и Карлос Юнтайд проводили эксперимент в лаборатории в 2008 году. Кальво, аспирант, работал с ферромагнитными контактами толщиной в атом, которые были созданы путем снижения и поднятия кончика сканирующего туннельного микроскопа на поверхности.
Юнтайд знал, что Нательсон работал с системами подобного же размера, но изготовленными другим способом, путем укладки металла на плоской поверхности. А потому Юнтайд договорился с правительством Испании о туристическом гранте, и Нательсон согласился понаблюдать за исследованием, которое предстояло провести Кальво в университете Райс.
«Рейес действовала очень быстро, и в течение нескольких недель она освоила технику, чтобы сделать соединение атомной ширины», сказал Нательсон. «Она провела множество экспериментов на соединениях, сделанных из кобальта и никеля, и мы наконец увидели тот же эффект Кондо, который она наблюдала в Испании».
Соавторы исследования Джоакин Фернандес-Россье и Хуан Хосе Паласио из университета Аликанте, а также Дэвид Якоб из университета Рутгерс, привели теоретическое обоснование для объяснения неожиданного эффекта. Нательсон заявил, что данное открытие — очередной пример уникального эффекта, характеризующего нанотехнологии.
«Инженеры, проектируя что-то на атомном уровне, должны помнить, что здесь вступают в силу совсем другие эффекты», заключил Нательсон.
- Источник(и):
- Войдите на сайт для отправки комментариев