Nano: Самое интересное

Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.

Какое-то время продолжим трудится на общее благо по адресу https://n-n-n.ru.
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.

Спасибо, ждём вас на N-N-N.ru

Когда думаешь о гениальности Природы (кто бы и какой бы смысл не вкладывал в слово Природа), хочется сказать, что её венец – это человечество, отдельные особи которого, гордо возложившие ноут на пузо, занимаются тем, о чём ещё несколько десятков лет можно было только мечтать: общаются со всем миром!

Группа исследователей, возглавляемая Александром Споттом (Alexander Spott) из Калифорнийского университета в Санта-Барбаре, создала первый в своем роде квантовый каскадный лазер из кремния. Подобное устройство имеет множество областей его применения, начиная от химической спектроскопии и детектирования различных химических соединений до коммуникаций в открытом космическом пространстве и астрономии. Кроме этого, интеграция лазеров прямо на кристаллы полупроводниковых чипов гораздо эффективней и компактней, нежели технологии введения на кристалл фотонно-электронного чипа луча света от внешнего лазера.

Мы любим квантмех. Так же, как и все неизведанное и удивительное. Хотя бы за то чувство, которое испытываешь, когда объясняется, например, одна из загадок тысячелетия. Мы проникаем во все уголки непознанного, будь то океаническое дно, граница вселенной или ядро нашего Солнца, чтобы хорошо в нем разобраться. Но что можно сказать о том, что даже сам Эйнштейн окрестил «жутким действием на расстоянии», не в силах понять его механизм? Мы говорим о феномене квантовой запутанности. Точнее о ее возможных применениях.

Учёные создали самые маленькие двигатели, которые в будущем можно будет использовать для создания нанороботов, призванных работать даже внутри клеток организма. Прогресс не стоит на месте, размеры роботов уменьшаются, но почему нанороботы вместо того, чтобы делать много всего полезного, продолжают оставаться на страницах научно-фантастических романов? Ответ прост: довольно сложно заставить этих маленьких роботов двигаться! Учёные, работающие в этой области, довольно долго пытались сконструировать подходящий источник энергии, но предпринятые ранее попытки особым успехом не увенчались. Роботы были очень вялые, а энергии постоянно не хватало.

Химики из Хаверфордского Колледжа и Университета Пердью в США разработали систем умашинного обучения, которая позволяет предсказать результат химической реакции на основе базы данных, собранной из лабораторных журналов исследователей. Точность предсказания системы (по крайней мере по одному типу реакций), достигла и даже превысила предсказательные способности профессиональных химиков. Описание системы опубликовано в журналеNature.

На смену элементам электронных приборов, для которых применимо классическое описание, приходит элементная база наноэлектроники, где необходим последовательно квантовомеханический подход. Квантово-размерные наноструктуры важны не только для наноэлектроники, но и как основа информационных систем нового поколения, они могут применяться для создания магниточувствительных детекторов, на их основе в оптоэлектронике создаются сверхмалые лазерные источники.

Китайские специалисты разработали электронную бумагу из графена. В недалеком будущем это изобретение может совершить революцию в производстве дисплеев для электронных устройств, включая носимые гаджеты и читалки. По словам китайских разработчиков, новый материал является также самым легким и крепким среди всех прочих.

Благодаря работе исследователей из университета Райс (Rice University), изобретение Николы Тесла может получить шанс на вторую жизнь.

Ученые и инженеры из Пенсильванского университета разработали метод производства тонкопленочных транзисторов и других полупроводниковых компонентов для гибкой электроники, который можно назвать одним из самых простых на сегодняшний день. При помощи этого процесса, основу которого составляют нанокристаллические «чернила», можно изготавливать не только отдельные компоненты, но и сложные схемы, которые станут основой гибких носимых электронных устройств, встраиваемых в бытовую технику или в одежду. Простота процесса заключается в отсутствии необходимости использования технологий вакуумного напыления и в нем не используются этапы высокотемпературной обработки. Благодаря этому электронные компоненты могут быть изготовлены на поверхности практически любого материала, а сложность и площадь создаваемых схем не ограничивается никакими факторами.

Клеи и клеящие вещества играют важную роль в современной жизни, от зданий до транспортных средств, от мобильных устройств до биомедицинских применений. В некоторых случаях требуется не постоянное прилипание, а нарушение сцепления по требованию. Исследователи из Германии разработали сильный клей, который при необходимости может легко отслаиваться без высоких температур, механической абразивной обработки, но остается стабильным при нормальных условиях эксплуатации.

Технология изготовления лазеров печатным способом, представленная в журнале Journal of Applied Physics, позволяет сделать их дешёвыми как никогда. Фактически, по утверждению авторов метода — исследователей из Франции и Венгрии — основную часть такого лазера вполне рентабельно будет выбрасывать после каждого использования.

Международная группа ученых, в состав которых вошли и физики из Московского государственного университета, разработала новый тип носителей лекарственных средств. Для адресной доставки препаратов в организм исследователи научились применять гелевые нанокапсулы. Статья об исследовании опубликована в журнале Scientific Reports.